Lecture 2 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras

Reading: [FP] Chapter 1, "Geometric Camera Models"

[HZ] Chapter 6 "Camera Models"

How do we see the world?

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture

Milestones:

• Leonardo da Vinci (1452-1519): first record of camera obscura (1502)

https://www.youtube.com/ watch?v=LutludRhm10

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera obscura
- Johann Zahn (1685): first portable camera

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera obscura
- Johann Zahn (1685): first portable camera
- Joseph Nicéphore Niépce (1822): first photo - birth of photography

Photography (Niépce, "La Table Servie," 1822)

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera obscura
- Johann Zahn (1685): first portable camera
- Joseph Nicéphore Niépce (1822): first photo - birth of photography
- Daguerréotypes (1839)
- Photographic Film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)

Photography (Niépce, "La Table Servie," 1822)


```
f = focal length
o = aperture = pinhole = center of the camera
```


Derived using similar triangles

$$\frac{x'}{f} = \frac{x}{z}$$

Is the size of the aperture important?

-What happens if the aperture is too small?

-Less light passes through

Adding lenses!

• A lens focuses light onto the film

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - Related to the concept of depth of field

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - Related to the concept of depth of field

• A lens focuses light onto the film

- All rays parallel to the optical (or principal) axis converge to one point (the focal point) on a plane located at the focal length f from the center of the lens.
- Rays passing through the center are not deviated

Paraxial refraction model

From Snell's law:

$$y' = z' \frac{y}{z}$$

$$z'=f+Z_{o}$$

$$f = \frac{R}{2(n-1)}$$

Thin Lenses

$$z'=f+z_{o}$$

$$f=\frac{R}{2(n-1)}$$

Snell's law:

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

$$n_1 \alpha_1 \approx n_2 \alpha_2$$

$$n_1 = n \text{ (lens)}$$

Small angles:

$$y' = z' \frac{y}{z}$$

Issues with lenses: Radial Distortion

 Deviations are most noticeable for rays that pass through the edge of the lens

Image magnification decreases with distance from the optical axis

Lecture 2 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Intrinsic
 - Extrinsic

Silvio Savarese Lecture 2 - 10-Jan-18

$$\mathbf{P} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} \longrightarrow \mathbf{P'} = \begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix}$$

$$\begin{cases} x' = f \frac{x}{z} \\ y' = f \frac{y}{z} \end{cases}$$

$$\mathfrak{R}^3 \stackrel{E}{\longrightarrow} \mathfrak{R}^2$$

[Eq. 1]

f = focal length
o = center of the camera

From retina plane to images

Pixels, bottom-left coordinate systems

Coordinate systems

1. Off set

$$(x, y, z) \rightarrow (f \frac{x}{z} + c_x, f \frac{y}{z} + c_y)$$

[Eq. 5]

Converting to pixels

- 1. Off set
- 2. From metric to pixels

 α, β : pixel

$$(x, y, z) \rightarrow (f k \frac{x}{z} + c_x, f l \frac{y}{z} + c_y)$$

$$\alpha \beta z \text{ [Eq. 6]}$$

$$C = [c_x, c_y] \text{ Units: k,l: pixel/m Non-square pixels}$$

Is this projective transformation linear?

 $C=[c_x, c_y]$

- Is this a linear transformation?
 No division by z is nonlinear
- Can we express it in a matrix form?

Homogeneous coordinates

$$\mathbf{E} \rightarrow \mathbf{H}$$

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene coordinates

Converting back from homogeneous coordinates

$$H \rightarrow E$$

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Projective transformation in the homogenous coordinate system

$$P_{h}' = \begin{bmatrix} \alpha & x + c_{x}z \\ \beta & y + c_{y}z \\ z \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_{x} & 0 \\ 0 & \beta & c_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P_{h}$$

$$P_{h}' \rightarrow P' = (\alpha \frac{x}{z} + c_{x}, \beta \frac{y}{z} + c_{y})$$

$$P_{h} \rightarrow P' = (\alpha \frac{x}{z} + c_{x}, \beta \frac{y}{z} + c_{y})$$

$$P_{h} \rightarrow P' = (\alpha \frac{x}{z} + c_{x}, \beta \frac{y}{z} + c_{y})$$

The Camera Matrix

[Eq.9]

$$P' = M P$$

$$= K \begin{bmatrix} I & 0 \end{bmatrix} P$$

$$P' = \begin{bmatrix} \alpha & 0 & c_x & 0 \\ 0 & \beta & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

image

Camera Skewness

How many degree does K have? 5 degrees of freedom!

Canonical Projective Transformation

$$P' = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad P' = M P$$

$$\Re^4 \longrightarrow \Re^3$$

$$P_i' = \begin{bmatrix} \frac{x}{z} \\ \frac{y}{z} \end{bmatrix}$$

The projective plane

- Why do we need homogeneous coordinates?
 - represent points at infinity, homographies, perspective projection, multi-view relationships
- What is the geometric intuition?
 - a point in the image is a ray in projective space

- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Point

Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector

Lecture 2 Camera Models

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Intrinsic
 - Extrinsic
- Other camera models

Silvio Savarese Lecture 2 - 10-Jan-18

World reference system

- •The mapping so far is defined within the camera reference system
- •What if an object is represented in the world reference system?
- Need to introduce an additional mapping from world ref system to camera ref system

Please refer to CA session on transformations for more details

2D Translation

2D Translation Equation

$$\mathbf{P'} = \mathbf{P} + \mathbf{t} = (\mathbf{x} + \mathbf{t}_{\mathbf{x}}, \mathbf{y} + \mathbf{t}_{\mathbf{v}})$$

2D Translation using Homogeneous Coordinates

$$\mathbf{P} = (x, y) \rightarrow (x, y, 1)$$

$$\mathbf{P'} \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling

Scaling Equation

$$\mathbf{P} = (\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P'} = (\mathbf{s_x} \mathbf{x}, \mathbf{s_y} \mathbf{y})$$

$$\mathbf{P} = (x, y) \rightarrow (x, y, 1)$$

$$\mathbf{P'} \to \begin{bmatrix} s_x x \\ s_y y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S'} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \mathbf{S} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

Rotation Equations

• Counter-clockwise rotation by an angle θ

$$x' = \cos \theta \ x - \sin \theta \ y$$
$$y' = \cos \theta \ y + \sin \theta \ x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \mathbf{P'} = \mathbf{R} \ \mathbf{P}$$

$$P' = R P$$

How many degrees of freedom? 1

$$\mathbf{P'} \rightarrow \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale + Rotation + Translation

$$\mathbf{P'} \to \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{S} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} \mathbf{S} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 similarity transformation

If $s_x = s_y$, this is a similarity transformation

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y}(\beta) = \begin{bmatrix} 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$\mathbf{R}_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = R_{x}(\alpha) R_{y}(\beta) R_{z}(\gamma)$$

$$P' \rightarrow \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}_{4\times4} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$P' \rightarrow \begin{bmatrix} R \\ 0 \end{bmatrix}$$

A rotation matrix in 3D has 3 degrees of freedom

3D Translation of Points

$$T = \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix}$$

$$P' \rightarrow \begin{bmatrix} I & T \\ 0 & 1 \end{bmatrix}_{4\times4} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

A translation vector in 3D has 3 degrees of freedom

3D Translation and Rotation

$$R = R_{x}(\alpha) R_{y}(\beta) R_{z}(\gamma) \qquad T = \begin{bmatrix} T_{x} \\ T_{y} \\ T_{z} \end{bmatrix}$$

$$P' \rightarrow \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix}_{4\times4} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

World reference system

$$P' = K \begin{bmatrix} I & 0 \end{bmatrix} P = K \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} P_w = K \begin{bmatrix} R & T \end{bmatrix}$$

External parameters

$$P_{w} = K \begin{bmatrix} R & T \end{bmatrix} P_{w}$$

The projective transformation

$$P'_{3\times 1} = M_{3\times 4} P_w = K_{3\times 3} \begin{bmatrix} R & T \end{bmatrix}_{3\times 4} P_{w4\times 1}$$

How many degrees of freedom?

$$5 + 3 + 3 = 11!$$

The projective transformation

Theorem (Faugeras, 1993)

$$M = K[R \quad T] = [KR \quad KT] = [A \quad b] \qquad A = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix}$$
[Eq.13]

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix is that $\text{Det}(\mathcal{A}) \neq 0$.
- A necessary and sufficient condition for \mathcal{M} to be a zero-skew perspective projection matrix is that $\text{Det}(\mathcal{A}) \neq 0$ and

$$(\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0.$$

 A necessary and sufficient condition for M to be a perspective projection matrix with zero skew and unit aspect-ratio is that Det(A) ≠ 0 and

$$\begin{cases} (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0, \\ (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_1 \times \boldsymbol{a}_3) = (\boldsymbol{a}_2 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3). \end{cases}$$

Properties of projective transformations

- Points project to points
- Lines project to lines
- Distant objects look smaller

Properties of Projection

Angles are not preserved

• Parallel lines meet!

Parallel lines in the world intersect in the image at a "vanishing point"

Horizon line (vanishing line)

Horizon line (vanishing line)

Next lecture

How to calibrate a camera?