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Single View Metrology !
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e Review calibration and 2D transformations

e VVanishing points and lines

e Estimating geometry from a single image

e Extensions
Reading:
[HZ] Chapter 2 “Projective Geometry and Transformation in 2D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”

[HZ] Chapter 8 “More Single View Geometry”
[Hoeim & Savarese] Chapter 2

Silvio Savarese



Calibration Problem
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Once the camera is calibrated...

Line of
- \sight
~ ~ -

M=K|[R T|

-Internal parameters K are known
-R, T are known - but these can only relate C to the calibration rig

Can | estimate P from the measurement p from a single image?

No - in general ® (P can be anywhere along the line defined by C and p)



Recovering structure from a single view
2 AL 2 .\

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl



Transformation in 2D

-Isometries
-Similarities
-Affinity

-Projective



Transformation in 2D

X R ¢ X X
Isometries: y' :[o J y|=H,|y| [Eq.4]
[Euclideans] | 1 i | 1 _ u 1 _

- Preserve distance (areas)
-3 DOF
- Regulate motion

of rigid object

Q




Class I: Isometries: preserve Euclidean
distance

(isp=2ame, metric=measure)

{x) [ecosf —siné r | x)
| »'|=| esiné cosé ¢t | v £=x1
l1) | o 0 1)1

«grientation presemnving: z =1 =» Euclideantransf.ie.
composition oftranslation and rotation = forms a group
-orientation reversing: £=-1 = reflection 2 does not

forma group

R
¥=H,x= or 1l R'R=I

F.is 2x2 rotationmatrix; (orthogonal tis translation 2-vector, [ is a null 2-vector
3DOF (1 rotation, 2 translation) = trans. Computed from two point correspondences

special cases: pure rotation, pure translation

Invariants: length (distance between 2 pts), angle between 2 lines, area



Transformation in 2D

x SR ¢ o o
Similarities: y' o= o 1 =H|
1 1 1
O =
- Preserve
- ratio of lengths
- angles —
-4 DOF




Class II: Similarities: isometry composed with an
isotropic scaling

{x [scosf —ssing 1 |x)
| ¥'|=|ssinf scoséd f,| v |(isometry+scale)
1) 0 ] 11
. SRt
xX=H;x= . % R'R-=1
4D0OF (1 scale, 1 rotation, 2 translation) = 2 point
correspondences

Scalars: isotropicscaling
also known as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

Invariants: ratios of length, angle, ratios of areas,
parallellines

Metric Structure means structure is definedupto a similarity



Transformation in 2D

Affinities: y' =[A t} y|=H,|y
N 1| [kq. 6l
A — dyp Qypp s, O
“la, a,, =R(6)-R(—¢)-D-R(9) D:{o . }
[Eq. 7] g




Transformation in 2D

X Ao X X
Affinities: y' :[o J y|=H,|y
A — d;p A, s, O
Tlan an] TRORCODERG D:{o sj
[Eq. 7]
-Preserve:

- Parallel lines

- Ratio of areas

- Ratio of lengths on
collinear lines

- others...
-6 DOF

A




Class III: Affinetransformations: non singular linear
transformation followed by a translation

1 1 b

(xY [a, a, t|x) b, i
V|=lay @ t,]) e
Y1) [0 0 1§1) Rotationbythetz Rf-ghi)DRiphi)
At scaling dirzctions
“=H x=|" X in the deformation
I |:[]T 1] are orthosonal
) : ) i 0
Can show: A =R[f# R|-¢ DRI #) D= |:f0 ) :|
A,

‘Rotation by phi, scale by D, rotation by — phi, rotation by theta

*6DOF (2 scale, 2 rotation, 2 translation)=» 3 pointcorrespondences
non-isotropic scaling
Invariants: parallellines, ratios of parallel lengths,
ratios of areas
Affinity is arientation presenving ifdet (A) is positive = depends
on the sign ofthe scaling



Transformation in 2D

<A x| ¢
Projective: Y' == b} y|=H,|y]| [Eq.8l
1 1 1

- 8 DOF

- Preserve:

- collinearity

- cross ratio of 4 collinear points
- and a few others...




The cross ratio

The cross-ratio of 4 collinear points is defined as

[Eq. 9]
P3 _Pl‘ l)4 o Pz
P,-P,||P,—P,

—_— NN X N:.><




Class IV: Projective transformations: general non
singular linear transformation of homogenous
coordinates

At . .
x'=HF.x=[ T }x v=[(¥.v y
vV

Hp has nine elements; only their ratio significant =» 8 Dof =» 4 correspondences
Mot always possibleto scale the matrnx tomake v umty: might be zero

Action non-homogeneous overthe plane

Invariants: cross-ratio offour points onaline
(ratio of ratio of length)



Projective transformations

Definition:

A projectivityis an invertible mapping hfrom P2 to itself
suchthatthree points xp.x.x3 lieonthe samelineifand
only if Mz )z #(x3) do. (i.e. mapslinestolinesin
P

Theorem:

A mapping #P2—=P? iz a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P? reprented by a vector x it is true that #x=Hx

Definition: Projective transformation: linear trans formation on homogensous 3
wectors represented by 3 non singular matroe H

(xy [h, Ry BV x
| -1‘_'.' |= '?f.'. 'rj.'.' 'ilj.'= X . or xX=Hx
)y By By )x) 8DOF

sprojectivity=collineation=projective transformation=haomaoagraphy
*Projectivity form a group: inverse of projectivity is alsoa
projectivity; sois a composition oftwo projectivities.



Projection along rays through a common point,
(center of projection) defines a mapping from one
plane to another

*Central projection maps points on one plane to points on another plane
*Projection also maps lines tolines : considera plane through projection
center that intersects the two planes = lines mapped onto lines =»
Central projection is a projectivity =»

central projection may be expressed by ¥'=Hx
(application of theorem)



More examples =«
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Overview transformations
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Projective camera




Weak perspective projection

When the relative scene depth is small compared to its distance from the camera

f’ Zo




Weak perspective projection

f’ Zo




Weak perspective projection

f’ Zo

P

Projective (perspective) Weak perspective
‘A b ‘A b

M =K[R T|= > M=
v 1 0 1




Special Case: Weak Perspective (Affine Projection)
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_ml | _ml Py, | _ml ]
, A b
P :MPW: m2 PW: m2PW M:|: 1:|: m2
\4
_m3_ _m3 PW_ _m3_
E
N (ml P, m,P, Perspective: projective
m,P "m,P transformation
m, m, P, M- {A b}
PP=MP, =| m, [P, =| mP, 0 1
m, 1 _ml_ i m, ]
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magnification Transformatoin



Orthographic (atfine) projection

Distance from center of projection to image plane is infinite

J
b -
k<
O
- ~= ° Q

x'= Lx
Z |
X'=x
3 —> |
fv { y =y Affine
y' ==y Transformation
V4



Pros and Cons of These Models

e Weak perspective results in much simpler math.

— Accurate when object is small and distant.
— Most useful for recognition.

e Pinhole perspective is much more accurate for
modeling the 3D-to-2D mapping.

— Used in structure from motion or SLAM.



Strong perspective:
Angles are not preserved
The projections of parallel lines intersect at one point



weak perspective

perspective

focal length

increasing

distance from camera

increasing

From Zisserman & Hartley



Strong perspective:
Angles are not preserved
The projections of parallel
lines intersect at one point
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A hierarchy of transformations

» Group of invertible nxn matrices with real elements =» general linear group on n dimensions
GL(n);
» Projective linear group: matrices related by a scalar multiplier PL(n); three subgroups:
e Affine group (last row (0,0,1))
¢ Euclidean group (upper left 2x2 orthogonal)
¢ Oriented Euclidean group (upper left 2x2 det 1)

- Alternative, characterize transformation in terms of elements or quantities
that are preserved or /invariant
- e.g. Euclidean transformations (rotation and translation) leave
distances unchanged

Similarity Affine projective
*Similarity: circle imaged as circle; square as square; parallel or perpendicular lines have same

relative orientation
*Affine: circle becomes ellipse; orthogonal world lines not imaged as orthogonoal; But, parallel lines

in the square remain parallel
*Projective: parallel world lines imaged as converging lines; tiles closer to camera larger image than

those further away.
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Lecture 4
Single View Metrology l{

e Vanishing points and lines

Reading:

[HZ] Chapter 2 “Projective Geometry and Transformation in 2D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 8 “More Single View Geometry”

[Hoeim & Savarese] Chapter 2

Silvio Savarese Lecture 4 -



Euclidean Geometry

1. Euclidean Geometry

e Euclidean geometry describes the world well.

e |t allows to measure lengths and angles.

e |length, angles, parallelism, orthogonality, and all other properties that are related via a
linear/Euclidean transform are preserved.

e Euclidean coordinates of a point in a plane are given by a 2-tuple ~ [u, v].



Ex: Consider the transformation that rotates 2 points, Py, P,, in a plane counter-clockwise 8°
with respect to the origin as shown in Fig. 1. The transformation can be represented by the
linear equations,

6 siné
p/ =R.p, = | °° P 1.1
1 1 Lsin@ cos 8] 1
' cosO sin@
P,b=RP, = ) 1.2
2 2 [—sin9 COS 9] 2

Since the transformation is Euclidean, the length between the two points, and the angle
subtended at the origin, before and after the transformation remains the same.

A
QP\1\€
TeP?’
oP;
,u"".‘.‘ :: t
‘) 0 _oP;
o

Fig. 1. — Rotating a point about the origin is a Euclidean transformation.



Q- Why do we need Projective geometry?

A — Because 3D objects are projected on to a 2D plane on capturing an image.

Projective Geometry

Describes projection to lower dimensions well. For instance, parallel lines in 3D space are no
longer parallel in @ 2D image projection, and appear to meet. Such properties are captured well
by projective geometry.

The horizon has the same projection.

Since parallelism between lines is not preserved, distances or angles are not preserved either.
Projective geometry describes a larger class of transformations. It is an extension of Euclidean
geometry and deals with the perspective projection of a camera.

Projective coordinates of a point in a plane are homogenized and represented by a 3-tuple:
[u,v,1]7.

Rule: Scaling the projective coordinates by a non-zero factor does not change the Euclidean
point it represents as it is homogenized. i.e., [u, v,1]7 = [y, Av, A]7.



3. Projective Space

The Euclidean coordinates of a point in a plane can be represented by a 2-tuple: [u, v]". It's
projective coordinates are obtained by appending a 1 to the vector: [u, v, 1]7. By representing the point
by this 3-tuple in projective coordinates, a one-to-one mapping is established between the 2D point in
Euclidean coordinates and the corresponding point in projective coordinates. Thus, scaling the point by
a non-zero zero factor does not change the Euclidean point it represents as it is homogenized. i.e.,
[u, v, 1]T = [Au, Av, A]T. Thus, projective coordinates represent naturally the operations performed by
cameras.



Definition: The space of (n + 1)-tuples of coordinates, with the rule that proportional (or scaled)
(n + 1)-tuples represent the same point, is called a projective space of dimension n, and is denoted P™.

In general, given coordinates in R™, the corresponding projective coordinates are obtained as,

Rn_,Pn
[x1, %5, oo xq]T —— [x1, X2, .., 2, 11T 3.1

To transform a point from projective coordinates back to Euclidean coordinates, we just need to divide
by the last coordinate and the drop the last coordinate,

3.2

[ ]T Pn—’Rr:' X, X2 Xn T
xl; x2, -.-,xn, xn+1 M

, ’ ’Il’
Xn+1 Xn+1 Xn+1



Points with last coordinate x,,,1 # 0 are usual points with representations in R, but points of the form
[x1, %5, ..., x,,0]7, do not have an equivalent representation in Euclidean coordinates. If we consider
them as the limit of [x;,%5, ..., X, A]7, when 1 = @, (i.e. the limit of [x,/A,x,/A,...,x,/4,1]7) then
they represent the limit of a point in R™ going to infinity in the direction [x,, x5, ..., x,]7. Such points are
called points at infinity.

Thus projective space contains more points than the Euclidean space of same dimensions, and is
a union of the usual space R™ and the set of points at infinity. i.e.,

P = R" U {[x;,X5, ..., X, 0] }. 3.3

As a result of this formalism, points at infinity are represented without exceptions in projective space.



Once the projection has been captured by the image, the true 3D depth of the point M, can no longer be
inferred from a single image due to the inherent nature of 3D to 2D projection. Thus any other point,
M’=[AX, AY, AZ]", that lies on the optical ray (C, M), also has the same 2D-projection, m. This depth
ambiguity cannot be inferred from a single image of the point using geometry alone, and the only
information available from the single image projection is the vector along which the 3D point lies in
space.

Scaled pointin

Point in 3D space
3D space o
. - — T
Projection onto 2D o7 / Pt M’=[AX, AY, AZ]

plane

<
Focal Point Image plane

Fig.2. — Perspective projection of a 3D point onto a 2D image plane



Robot Mapping

A Short Introduction to
Homogeneous Coordinates

Cyrill Stachniss

UNI
§if  FREIBURG



Motivation

= Cameras generate a projected image
of the world

= Euclidian geometry is suboptimal to
describe the central projection

= In Euclidian geometry, the math can
get difficult

= Projective geometry is an alternative
algebraic representation of geometric
objects and transformations

= Math becomes simpler



Projective Geometry

= Projective geometry does not change
the geometric relations

= Computations can also be done in
Euclidian geometry (but more difficult)



Homogeneous Coordinates

= H.C. are a system of coordinates used
In projective geometry

= Formulas involving H.C. are often
simpler than in the Cartesian world

= Points at infinity can be represented
using finite coordinates

= A single matrix can represent affine
transformations and projective
transformations



Homogeneous Coordinates

= H.C. are a system of coordinates used
In projective geometry

= Formulas involving H.C. are often
simpler than in the Cartesian world

= Points at infinity can be represented
using finite coordinates

= A single matrix can represent
affine transformations and
projective transformations



Homogeneous Coordinates

Definition
= The representation x of a geometric

object is homogeneous if x and Ax
represent the same object for \ # 0

Example
o wx | x|
X = () — wy — y
W W _1_




From Homogeneous to
Euclidian Coordinates

homogeneous Euclidian
u - wz | T
X
XxX=|v |=|wy |=]|Y o [
Y
W w 1
u w/w . - -
/ u/w T
vl = |v/w| — o/ —
w 1 - - £




From Homogeneous to
Euclidian Coordinates

- - B B [Courtesy by K. Schindler] 8



Center of the Coordinate System

S
|
-

o
|

— O O O




Infinitively Distant Objects

= [t is possible to explicitly model
infinitively distant points with finite
coordinates

U
Xoo = |V

0

= Great tool when working with bearing-
only sensors such as cameras

10



3D Points

= Analogous for 3D points

homogeneous

U

U
w
_t_

it
v/t
w/t

Euclic

it
v/t

1

(w/t_

lan

11



Transformations

= A projective transformation is a
invertible linear mapping

/
X = Mx

12



Important Transformations ([P3)

= General projective mapping
x' =M x

= Translation: 3 parameters
(3 translations) —] =

Al
M=X0oT 1 -

HH_| J—
|

' o o 9+
l | N

o = O
_ O O

o~
N

13



Important Transformations ([P3)

= Rotation: 3 parameters
(3 rotation)

‘PO
1

M = A

rotation
matrix



Recap — Rotation Matrices

oD/ |cos(f) —sin(0)
R7(0) = [sin(@) cos(6) ]
1 0 0 [ cos(¢) 0 sin(¢)
R3P(w)= {0 cos(w) —sin(w) R??;D(@ 0 1 0
0 sin(w) cos(w) —sin(¢) 0 cos(¢)
‘cos(k) —sin(k) 0
R3P (k) = |sin(k) cos(k) 0
0 0 1

15



Important Transformations ([P3)

= Rotation: 3 parameters
(3 rotation)

‘RO

M:A_oT 1

= Rigid body transformation: 6 params
(3 translation + 3 rotation)

R t

M:A_oT 1




Important Transformations ([P3)

= Similarity transformation: 7 params
(3 trans + 3 rot + 1 scale)

‘mR t

M:A_oT 1

= Affine transformation: 12 parameters
(3 trans + 3 rot + 3 scale + 3 sheer)

At

M=2Alom 1




Transformations in P?

| 2D Transformation | Figure |d. o. f | H ] H |
1 0 t, I+
Translation D_ D 2 01t %
0 0 1
1 0 0 "7 o
Mirroring at y-axis I:L [j 1 g —0 1 (i) o7 1
cosp —sing 0 R
Rotation :L Q’ 1 sing cosp O 8T i
0 0 1
cosp —sing it .
R %
Motion O 3 sing cosp t, T
:L 0 0 h | S |
[ a =b &,
Similarity O 4 b oa t, il
0 0 1
1+m/2 0 0 "D o
Scale difference _| — | 0 1-m/2 0 & i
0 0 1
1 s/2 0 s o
Shear ] 1 sf2 1 0 2 S
0 0 1
1.8 0 s 0
Asym. shear —l 1§ 010 oT 1
0 01
@b iC -
Affinity | e de f 0‘} :
I JE R | E
a b c & 9
Projectivity | 8 d e f [ T 1/ ]
R p' 1/

[(Eourtesy by K. Schindler] 18



Transformations

= [Inverting a transformation
x' = Mx
x = M X

= Chaining transformations via matrix
products (not commutative)

X/ = MlMgX
7& MQMlX



Motions

= We will express motions (rotations
and translations) using H.C.

R t

M:)\_OT 1

= Chaining transformations via matrix
products (not commutative)

X/ — MlMQX
# MQMlX



Conclusion

= Homogeneous coordinates are an
alternative representation for
geometric objects

= Equivalence up to scale
X = Ax with A #£ 0
= Modeled through an extra dimension

= Homogeneous coordinates can simplify
mathematical expressions

= We often use it to represent the
motion of objects

21



Literature

TOPIC

= Wikipedia as a good summary on
homogeneous coordinates:

http://en.wikipedia.org/wiki/Homogeneous_coordinates

22



The projective plane

Why do we need homogeneous coordinates?

represent points at infinity, homographies, perspective
projection, multi-view relationships

What is the geometric intuition?
a point in the image is a ray in projective space

S

X,Y,1)

A 4

-

(sx,sY,s)

-y
(0,0,0)

i X image plane

« Each point (x,y) on the plane is represented by a ray (sx,sy,s)
— all points on the ray are equivalent: (x, vy, 1) = (sx, sy, s)



PiS¥eot6e Spempins

Projective lines

What does a line in the image
correspond to in projective space?

« Aline is a plane of rays through origin
— all rays (x,y,z) satisfying: ax + by +cz=0

X
In vector notation : 0= [a b c]{ y}

z

N

« Aline is also represented as a homogeneous 3-vector |




Lines in a 2D plane

ax +by+c=0

a

I=|b

C

If x=[x,,x,]' €l

Y

|[Eq. 10]



Lines 1n 2-D
* General equation of a line 1n 2-D:
ax+by+c=0
* In homogeneous coordinates:
a

lTp=l°p=O l=|b| p=

C

P




Lines in a 2D plane

Y

Intersecting lines I
x =1x1" [Eq. 11] E 1

Proof

Ixl'11 —>Ux1)-1=0 —>xel [Eq. 12
IxI' L1 —=Ax1Y)1=0 > xel" [Eq. 13

X

— X is the intersection point



Points from lines and vice-versa

Intersections of lines
The intersection of two linesland I'is x =1x1'

Line joining two points
The line through two points x and x'is 1= xxx'

Example




2D Points at infinity (ideal points)

— —_ _a_
2 ~alb=-da'/b [
X=X, |,X;#0 B
X5 .
_ | [
x', ¢
r__ !
. = i, I F=b
0 C
b
Let’s intersect two parallel lines: SIxl'oc|l—qg | = x_ [Eq.13]
o0
L 0 | =ideal point!

* In Euclidian coordinates this point is at infinity
 Agree with the general idea of two lines intersecting at infinity



2D Points at infinity (ideal points)

X=X, |,X;#0

1

1’

—al/b=-a'lb'

Note: the line | = [a b c]" pass trough the ideal point X_

"x =la b ¢

So does the linel’ sinceab’=a’b

=0 [Eq. 15]

1=|b

"=




Lines infinity 1_

Set of ideal points lies on a line called the line at infinity.
How does it look like?

N \\ b"

—XI—T —O— \\\ X —|-a"

Indeed: |x,| {0|=0 ) 0
0| [1 1

A line at infinity can be thought of the set of “directions” of lines in the plane



Transformation of lines

For points ona line 1, the transformed points under proj. trans.
also le on aline; if pointx is on line 1 then transforming %, transforms 1

For a point transformation
X=Hx

Transformation forlines

I'=HT1



Projective transformation of a point at infinity

A t
H = -
p':H p is it a point at infinity?
~ 11 [ p'
/A t P
H poo — ? — v b 1= py ...no!
[Eq. 17] 0] P
_1_ _pv 1 An aif‘fine
B ] x transformation
H _o | || | cepen
A pOO e O b py q:'|inhmt)-, I:t
[Eq. 18] - “10] | O | infinity




Projective transformation of a line (in 2D)

T E E
H = >
vV b
1, — H_T 1 is it a line at infinity?
[Eq. 19] / ro] T
T At
H loo — ‘7 — v b 0| = ty o
[Eq. 20] - - 1] | b
o o

a1 oo 4 ol 47 o],
[E: 21] | 0 1 —TA47" 1




Points and planes in 3D

_Xl_ a
| %2 b
X = 1T —
X3 C z
L d

xEM<>x'I1=0 ax+by+cz+d=0
[Eq. 22] [Eq. 23]



3D points

3D point
(X,7,Z)" inR3
X :(X19X29X39X4)T in P

;
X:(Xl,XZ,X%lj =(x,7,2,1)'  (Xx,#0)
X, X, X,

projective transformation

X'=HX (4x4-1=15 dof)



Planes

3D plane Transformation
X+, Y+, Z+m, =0 X'=HX
=H"n

t X, +1,X,+t, X+, X, =0
' X =0

Euclidean representation
n.X+d=0 n=(n,n,,x,) (x,7,2)

X =
@ n, = d X =1
/]

Dual: points <> planes, lines < lines



Planes 1n 3-D

* General equation of a plane 1n 3D:

ax+by+cz+d =0

* In homogeneous coordinates:

I'p=Mep=0 Il=

a8

:,_N gx:




Lines in 3D

* Lines have 4 degrees of freedom - hard to
represent in 3D-space

* Can be defined as intersection of 2 planes

d = direction of the line
=[a,b,c]!



Points at infinity in 3D

Points where parallel lines intersect in 3D

oint at infinit
P . Y X,
world - X,
Ve // x —
P 00
// x3
0

Parallel lines



Vanishing points

* Each set of parallel lines
(=direction) meets at a
different point -

— The vanishing point for this
direction
+ Sets of parallel lines an
the same plane lead to
collinearvanishing points.

— The line is called the
horizon for that plane



oFe e Untitled1

The castle "up close’ e
Vanishing Points close to the object

U N 2

http:/iwww. ider herts_ac ukischoolcourseware/grap
hics/two_point_perspective_html



Vanishing points

image plane

~

|_vanishing point v

»
»

camera

center
C

line on ground plane

Vanishing point

 projection of a point at infinity

CSE 576, Spring 2008 Projective Geometry



Vanishing points

image plane
\
|_vanishing point v
e
e >
camera
center
C :
line on ground plane
line on ground plane
Properties

* Any two parallel lines have the same vanishing point v
« The ray from C through v is parallel to the lines

* Animage may have more than one vanishing point
— in fact every pixel is a potential vanishing point

CSE 576, Spring 2008 Projective Geometry
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Vanishing lines

Multiple Vanishing Points

* Any set of parallel lines on the plane define a vanishing point

« The union of all of vanishing points from lines on the same
plane is the vanishing line

— For the ground plane, this is called the horizon
CSE 576, Spring 2008 Projective Geometry 11



Vanishing lines

Multiple Vanishing Points

« Different planes define different vanishing lines

CSE 576, Spring 2008 Projective Geometry
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Computing vanishing points

/.

e

=— P=P +D

(P, +tD,
P, +tD,
" | P, +tD,

CSE 576, Spring 2008 Projective Geometry



Computing vanishing points

/PO

P, +tD,| [P,/t+D,]
P, +tD, P, /t+D,
" | P,+tD, P,/t+D,
1 1/t

Properties v=IIP,
« P_ is a point at infinity, v is its projection
 They depend only on line direction
« Parallel lines P, + tD, P, + tD intersect at P_,




Properties of projective transformations

* Points project to points
* Lines project to lines
* Distant objects look smaller




Properties of Projection

¢ Ang|es are not Preserved Parallel lines in the world

¢ Parallel lines meet! intersect in the image at a
“vanishing point”




Horizon line (vanishing line)

. ’ L)
- . 0
I .
| L] | | | | | I ] | | I | | I | | | | | | | | | |
1 R

-
v

AR L L P T




Horizon line (vanishing line)




Vanishing points

The projective projection of a point at infinity into the image
plane defines a vanishing point.

point at infinity

world .

Parallel lines

.| =

= direction of
corresponding
parallel lines in 3D

P

P

P
P-
Ps




Vanishing points and directions

d
d = direction of the Iinx\

=[a, b, [

v=Kd a-XY

[Eq. 24] HK v H [Eq. 25]

Q

>
Il
S o & Q8
<

S o S Q




Vanishing (horizon) line

Image



CSE 576, Spring 2008 Projective Geometry




Example of horizon line

The orange line is the horizon!



Are these two lines parallel or not?

O 1
' .‘ . w
’

. ¥

{&_

"
A
-t

.

!

\4 *

4 -
.

- Recognize the horizon line
- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are // in 3D



Vanishing points and planes

n=K'l

[Eq. 27]

horiz

See sec. 8.6.2 [HZ] for details




Planes at infinity

o O O

1

plane at infinity

* Parallel planes intersect at infinity in a common line -
the line at infinity

* A set of 2 or more lines at infinity defines the plane at
infinity TT



Angle between 2 vanishing points

X200
C\
X1oo e q 2
> ._ e\ é
d C

T
V,av,

cos@ =

T T
[Eq. 28] \/Vl DV, \/Vzm v,

f =90 —

w=(KK")"
[Eq. 30]
T
V,@V, =0 |[eq.29]

Scalar equation



Projective transformation of a conicQ2

H /\,':\ w,
Gl
C

I
I
I
I
, :
[
:’ ’ /
I 1
I
I

W,=M"QM"

HZ page 73, eq. 3.16



Projective transformation of (3 sssotucconi

L
@ C
C

I
[ |
I p /
I /
I ’ ]
I
I

w=M"QM'=(KK")"'

HZ page 73




Properties of

w =(KK')" M=K[ R T ]
[Eq. 30]

1. o= ®, ®, .| symmetricandknown up scale

@, =0

2. m,=0 zero-skew 3. @ = @,

square pixel



Summary

T
V:Kd n:thoriz
[Eq. 24] [Eq. 27]
g v @V, 6=90 [~
V, DV, V,® V,
[Eq. 28] [Eq. 29]
Useful to: w=(KK")"
Eq. 30
e To calibrate the camera [Eq. 30

* To estimate the geometry of the 3D world



Fun with vanishing points

CSE 576, Spring 2008 Projective Geometry 17



Perspective cues

,

<}

[
<\

CSE 576, Spring 2008 Projective Geometry

\J
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Perspective cues

CSE 576, Spring 2008 Projective Geometry
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Perspective cues

CSE 576, Spring 2008 Projective Geometry
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Comparing heights

Vanishing
Point

AN

CSE 576, SpringZ008 Projective Geome

21



Measuring height




Computing vanishing points (from lines)

Intersect p,q, with p,q,

v=(p1 X q1) X (P2 X q2)

Least squares version

» Better to use more than two lines and compute the “closest” point of
intersection
« See notes by Bob Collins for one good way of doing this:
— http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt
CSE 576, Spring 2008 Projective Geometry 23



http://www.cse.psu.edu/people/faculty.php?person=rcollins
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

C Z

v

ground plane

Compute Z from image measurements
* Need more than vanishing points to do this

CSE 576, Spring 2008 Projective Geometry

24



The cross ratio

A Projective Invariant

« Something that does not change under projective transformations
(including perspective projection)

The cross-ratio of 4 collinear points

Xi
P3_P1‘ ‘P4_P2 p_| L
P3_P2‘ ‘P4_P1 K
1
HP1 _P3H HP4 _P2H
Can permute the point ordering |P, —P,|| [P, — P,

« 41 =24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

CSE 576, Spring 2008 Projective Geometry



Measuring height

0 T-B||>-R| &
[R—B| [o-T] &

scene cross ratio
@ T (top of object)

[te=blv,-r] —H
"OF (reference point) Hr —bH HVZ —tH R
R image cross ratio
\‘ir' v
B (bdttom of object)
ground plane bd _
. Y| . .
scene points represented as P = . image pointsas p=|y
CSE 576, Spring 2008 Projective(“ieometry _1_ 26




Measuring height Iv,

i t
tE(vxtO)x(rxb)
D

vanishing line (horizon)

\ t
v = (bxbg) X (vg X vy) 0O

Vy (V)
NS ——

1<

§

[N

.““'\\




Measuring height

vanishing line (horizon)

V
—7)
/|

What if the point on the ground plane b, is not known?
» Here the guy is standing on the box, height of box is known
— « Use one side of the box to help find b, as shown above ™~

UDL O /0, DPLLULEZLZUUO \/rrqjccuvc Ucuult:v \K 40



Lecture 4
Single View I\/Ietrology

e Estimating geometry from a single image

Reading:

[HZ] Chapter 2 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 8 “More Single View Geometry”

[Hoeim & Savarese] Chapter 2

Silvio Savarese Lecture 4 -



Single view calibration - example

© T
N cosf = MEAP
o \/VlTa) \2 \/Vga) v,
6 =90°
4 [Eq. 29]
T
v,ov,=0 .
< —— Do we have enough constraints to
T ~—1 estimate K2
W = (K K ) K has 5 degrees of freedom and Eq.29
g is a scalar equation ®




Single view calibration - example

T
vV, Vv,

T T
\/Vla)V1 \/V20) v,

=
N cos@ =
(o
e




Single view calibration - example

@

0=\0, o,

@, O

e Square pixels

e No skew

[Eqgs. 31]

9

(T
v,ov,=0

< viov,=0

T _
Vv, vy, =0

@,

@;

Ws




* Square pixels @, =0
* No skew @, = O,

[Eqgs. 31]

Single view calibration - example

w, 0 o,

= 0 w w;s

known up to scale

w, s O

9

(T
v,ov,=0

< viov,=0

- Compute (@ |

T _
Vv, vy, =0



Single view calibration - example

w, 0 o,
w=| 0 w ;s

w, s O

e Square pixels @, =0
9
* No skew 0, = 0,
(
T —
| vi@v,=0
™ T - .
i< V, @V, = 0 Once o is calculc;jecl_,lwe get K:
Vv, vy, =0

(Cholesky factorization; HZ pag
582)



Single view reconstruction - example

[Eq. 27]
K  known S n= KTl = Scene plane orientation in

horiz the camera reference system

Select orientation discontinuities



Single view reconstruction - example

Recover the structure within the camera reference system

Notice: the actual scale of the scene is NOT recovered

* Recognition helps reconstruction!
* Humans have learnt this




Lecture 4

e Extensions

Reading:

[HZ] Chapter 2 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 3 “Projective Geometry and Transformation in 3D”
[HZ] Chapter 8 “More Single View Geometry”

[Hoeim & Savarese] Chapter 2

Silvio Savarese Lecture 4 -




Criminisi & Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl



Criminisi & Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl






La Trinita' (1426)
Firenze, Santa Maria

Novella; by Masaccio
(1401-1428)



http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl




Single view reconstruction - drawbacks

s

TRt Y, - =

Manually select:
* Vanishing points and lines;
* Planar surfaces;

* Occluding boundaries;

* Etc..



Automatic Photo Pop-up

Hoiem et al, 05




Automatic Photo Pop-up

Hoiem et al, 05...




Automatic Photo Pop-up

Hoiem et al, 05...

Software:

http://www.cs.uiuc.edu/homes/dhoiem/projects/software.html



Make3D

Saxena, Sun, Ng, 05...

Training Prediction

Plane Parameter MRF

Pla| X, vy . R 0) H fileg| X v, Ryt 6)

va a oy Ric Ry)

%

(a) (b)
youtube Connectivity  Co-Planarity




Make3D

Saxena, Sun, Ng, 05...

A software: Make3D
“Convert your image into 3d model”

http://make3d.stanford.edu/
http://make3d.cs.cornell.edu/



Depth map reconstruction using deep learning
Figen et al., 2014

Depth Map Prediction from a Single Image using a Multi~Scale Deep Network,
Eigen, D., Puhrsch, C. and Fergus, R. Proc. Neural Information Processing Systems 2014,



3D Layout estimation

Dasgupta, et al. CVPR 2016

Right

Optimizer

58



3D Layout estimation

- “ .
2 — Nt ’”




Coherent object detection and scene

layout estimation from a single image
Y. Bao, M. Sun, S. Savarese, CVPR 2010, BMVC 2010




Next lecture:

Multi-view geometry (epipolar geometry)



Appendix



Vanishing points - example

vl, v2: measurements
K = known and constant

Can | compute R?

No rotation around z

- K'v
e

- K'v
b









