Lecture 6

Stereo Systems
 Multi-view geometry

Professor Silvio Savarese

Computational Vision and Geometry Lab

Lecture 6

Stereo Systems
 Multi-view geometry

- Stereo systems
- Rectification
- Correspondence problem
- Multi-view geometry
- The SFM problem
- Affine SFM

```
Reading: [AZ] Chapter: }9\mathrm{ "Epip. Geom. and the Fundam. Matrix Transf."
    [AZ] Chapter: }18\mathrm{ "N view computational methods"
[FP] Chapters: 7 "Stereopsis"
[FP] Chapters: 8 "Structure from Motion"
```


Epipolar geometry

O_{2}

- Epipolar Plane
- Baseline
- Epipolar Lines
- Epipoles e, e^{\prime}
$=$ intersections of baseline with image planes
$=$ projections of the other camera center

Epipolar Constraint

$$
p^{T} E p^{\prime}=0
$$

$$
E=\left[T_{\star}\right] \cdot R
$$

E = Essential Matrix
(Longuet-Higgins, 1981)

Essential matrix

$$
\begin{gathered}
\mathbf{E}=\left[\mathbf{T}_{x}\right] \cdot \mathbf{R} \\
\mathbf{E}=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right] \mathbf{R}
\end{gathered}
$$

Epipolar Constraint

$$
\mathrm{p}^{\mathrm{T}} \mathrm{~F} \mathrm{p}^{\prime}=0
$$

$$
F=K^{-T} \cdot\left[T_{\star}\right] \cdot R K^{\prime-1}
$$

F = Fundamental Matrix
(Faugeras and Luong, 1992)

Parallel image planes

- Epipolar lines are horizontal
- Epipoles go to infinity
- v-coordinates are equal

$$
p=\left[\begin{array}{c}
p_{u} \\
p_{v} \\
1
\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}
p_{u}^{\prime} \\
p_{v} \\
1
\end{array}\right]
$$

Parallel image planes

Essential matrix for parallel images

$$
\begin{gathered}
\mathbf{E}=\left[\mathbf{T}_{\times}\right] \cdot \mathbf{R} \\
\mathbf{E}=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right] \mathbf{R}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right] \\
\mathbf{T}=\left[\begin{array}{lll}
\mathbf{T} & 0 & 0
\end{array}\right] \\
\mathbf{R}=\mathbf{I}
\end{gathered}
$$

Parallel image planes

Parallel image planes

How are p
and p^{\prime}
$p^{T} \cdot E p^{\prime}=0$
related?

Parallel image planes

How are p
and $\mathbf{p}^{\prime} \quad \Rightarrow(u \quad v$ related?

$$
\text { 1) }\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \Rightarrow\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
-T \\
T v^{\prime}
\end{array}\right)=0 \Rightarrow T v=T v^{\prime}
$$

Parallel image planes

Rectification: making two images "parallel"
Why it is useful?

- Epipolar constraint $\rightarrow v=v^{\prime}$
- New views can be synthesized by linear interpolation

Rectification: making two images "parallel"

H

Courtesy figure S. Lazebnik

Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Rectification

From its reflection!

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Point triangulation

Disparity is inversely proportional to depth z!

Computing depth

disparity $=p_{u}-p_{u}^{\prime} \propto \frac{B \cdot f}{z} \quad[$ Eq. 1]
Disparity is inversely proportional to depth z !

Disparity maps

http://vision.middlebury.edu/stereo/

$$
\begin{array}{r}
p_{u}-p_{u}^{\prime} \propto \frac{B \cdot f}{z} \\
{[\text { Eq. 1] }}
\end{array}
$$

Stereo pair

Disparity map / depth map

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Correspondence problem

Given a point in 3D, discover corresponding observations in left and right images [also called binocular fusion problem]

Correspondence problem

When images are rectified, this problem is much easier!

Correspondence problem

- A Cooperative Model (Marr and Poggio, 1976)
- Correlation Methods (1970-)
- Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)
[FP] Chapters: 7

Correlation Methods (1970-)

$$
\bar{p}=\left[\begin{array}{c}
\bar{u} \\
\bar{v} \\
1
\end{array}\right] \quad \bar{p}^{\prime}=\left[\begin{array}{c}
\bar{u}^{\prime} \\
\bar{v} \\
1
\end{array}\right]
$$

Correlation Methods (1970-)

$$
\bar{p}=\left[\begin{array}{c}
\bar{u} \\
\bar{v} \\
1
\end{array}\right] \quad \bar{p}^{\prime}=\left[\begin{array}{c}
\bar{u}^{\prime} \\
\bar{v} \\
1
\end{array}\right]
$$

Correlation Methods (1970-)

What's the problem with this?

Window-based correlation

- Pick up a window \mathbf{W} around $\bar{p}=(\bar{u}, \bar{v})$
- Build vector w

Window-based correlation

Example: \mathbf{W} is a 3×3 window in red

$$
\mathbf{w} \text { is a } 9 \times 1 \text { vector }
$$

$$
\mathbf{w}=[100,100,100,90,100,20,150,150,145]^{\top}
$$

- Pick up a window \mathbf{W} around $\bar{p}=(\bar{u}, \bar{v})$
- Build vector w
- Slide the window \mathbf{W} along $v=\bar{v}$ in image 2 and compute $\mathbf{w}^{\prime}(u)$ for each u
- Compute the dot product $\mathbf{w}^{\top} \mathbf{w}^{\mathbf{\prime}}(\mathrm{u})$ for each u and retain the max value

Window-based correlation

Example: \mathbf{W} is a 3×3 window in red
\mathbf{w} is a 9×1 vector
$\mathbf{w}=[100,100,100,90,100,20,150,150,145]^{\top}$

What's the problem with this?

Changes of brightness/exposure

Changes in the mean and the variance of intensity values in corresponding windows!

Normalized cross-correlation

Find u that maximizes: $\frac{(w-\bar{w})^{T}\left(w^{\prime}(u)-\bar{w}^{\prime}\right)}{\|(w-\bar{w})\|\left(w^{\prime}(u)-\bar{w}^{\prime}\right) \|} \quad$ [Eq. 2]

$$
\bar{w}=\begin{aligned}
& \text { mean value within } \mathbf{W} \\
& \text { located at ubar in image } 1
\end{aligned}
$$

$$
\bar{w}^{\prime}(u)=\begin{aligned}
& \text { mean value within } \mathbf{W} \\
& \text { located at } u \text { in image } 2
\end{aligned}
$$

Example

Credit slide S. Lazebnik

Effect of the window's size

Window size $=3$

Window size $=20$

- Smaller window
- More detail
- More noise
- Larger window
- Smoother disparity maps
- Less prone to noise

Issues

- Fore shortening effect

- Occlusions

Issues

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B / z is small, small errors in measurements imply large error in estimating depth

Issues

- Homogeneous regions

Issues

- Repetitive patterns

Correspondence problem is difficult!

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- Disparity is typically a smooth function of x (except in occluding boundaries)

Lecture 6

Stereo Systems
 Multi-view geometry

- Stereo systems
- Rectification
- Correspondence problem
- Multi-view geometry
- The SFM problem
- Affine SFM

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Structure from motion problem

Given m images of n fixed 3D points

$$
\cdot \mathbf{x}_{i j}=\mathbf{M}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

Structure from motion problem

From the $m \times n$ observations $\mathbf{x}_{i j}$, estimate:

- m projection matrices \mathbf{M}_{i}
motion
- n 3D points X_{j}
structure

Affine structure from motion

 (simpler problem)

From the $m \times n$ observations $\mathbf{x}_{i j}$ estimate:

- m projection matrices \mathbf{M}_{i} (affine cameras)
- n 3D points X_{j}

$$
\begin{aligned}
& \text { Perspective } \\
& \mathbf{X}=M \mathbf{X}=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right] \mathbf{X}=\left[\begin{array}{c}
\mathbf{m}_{1} \mathbf{X} \\
\mathbf{m}_{2} \mathbf{X} \\
\mathbf{m}_{3} \mathbf{X}
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{b} \\
\mathbf{v} & \mathbf{1}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{m}_{1} \\
\mathbf{m}_{2} \\
\mathbf{m}_{3}
\end{array}\right], ~
\end{aligned}
$$

$$
\mathbf{x}^{E}=\left(\frac{\mathbf{m}_{1} \mathbf{X}}{\mathbf{m}_{3} \mathbf{X}}, \frac{\mathbf{m}_{2} \mathbf{X}}{\mathbf{m}_{3} \mathbf{X}}\right)^{T}
$$

Affine cameras

For the affine case (in Euclidean space)

The Affine Structure-from-Motion Problem

Given m images of n fixed points X_{i} we can write

Problem: estimate m matrices A_{i}, m matrices b_{i} and the n positions \mathbf{X}_{i} from the $\mathrm{m} \times \mathrm{n}$ observations \mathbf{X}_{ij}.

How many equations and how many unknown?
$2 m \times n$ equations in $8 m+3 n-8$ unknowns

The Affine Structure-from-Motion Problem

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

Next lecture

Multiple view geometry: Affine and Perspective structure from Motion

