EE 40

Homework \# 7

Due Tuesday, May 13, 2003 in class or in drop box by 3:30 PM
40 Total Points Possible
Problem 1: 10 Points Possible

Problem 2: 10 Points Possible

For the following, let $(\mathrm{W} / \mathrm{L}) \mu_{N} \mathrm{C}_{\mathrm{ox}}=2 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=1 \mathrm{~V}$; ignore λ.
a) Let $B=0.3$. Using the small-signal model, find the range of variation in the resistor voltage.
b) Find the gain: the magnitude of variation in the resistor voltage divided by the magnitude of variation of V_{GS}. You can use part a) values.
c) Write an equation for the resistor voltage as a function of time.
d) What is the maximum value of B allowed if the transistor is to remain in saturation mode?

Find $\mathrm{V}_{\text {out }}$ for the circuit below, ignoring the effect of the rails.
Assume $\mathrm{V}_{\mathbb{I N}}>0 \mathrm{~V}$. Use $(\mathrm{W} / \mathrm{L}) \mu_{N} \mathrm{C}_{\mathrm{OX}}=2 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{TH}(\mathrm{N})}=1 \mathrm{~V}$; ignore λ.

Problem 3: 10 Points Possible
Design a circuit with inputs A and B and output F, which performs the following function:
$\mathrm{F}=\mathrm{AB}$ if control voltages $\mathrm{C}_{1} \mathrm{C}_{0}=00$ or $\mathrm{C}_{1} \mathrm{C}_{0}=01$
$F=A+B$ if control voltages $C_{1} C_{0}=10$
$F=A \oplus B$ if control voltages $C_{1} C_{0}=11$
You may use regular logic gates, or a multiplexer.

Problem 4: 10 Points Possible
Consider the circuit below, where each logic circuit box has a propagation delay of 2 ns .
a) Calculate the total propagation delay that a logic signal will experience from the input A to the output F.
b) Suppose that a correct output F must be maintained for at least 1 ns before a new value can be put on the input to perform another computation. Calculate the number of computations that can be performed in one second. One computation means one input traveling all the way through the circuit from A to F, with correct output held for 1 ns .

Consider the pipelined circuit below, where each logic circuit box has a propagation delay of 2 ns and each latch has a propagation delay of 1 ns .
c) Calculate the total propagation delay that a logic signal will experience from the input A to the output F, assuming the clock signal is optimized to leave just enough time to charge the latch capacitances, leading to the propagation delays as stated above.
d) Suppose that a correct output F must be maintained for at least 1 ns before a new value can be put on the input to perform another computation. Calculate the number of computations that can be performed in one second. One computation means one input traveling all the way through the circuit from A to F, with correct output held for 1 ns . Use the pipelined input scheme as demonstrated in Lecture 28.

