UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EECS 40
Fall 2003
Introduction to Microelectronic Circuits
Prof. King
FINAL EXAMINATION
December 10, 2003
Time allotted: 2 hours 50 minutes (170 minutes)

NAME: \qquad , \qquad (print)

Last
First
Signature: \qquad STUDENT ID\#: \qquad

1. This is a CLOSED BOOK exam. However, you may use 3 sheets of notes and a calculator.
2. SHOW YOUR WORK or REASONING on this exam. (Make your methods clear to the grader.)
3. Write your answers clearly (legibly) in the spaces (lines, boxes, or plots) provided.
4. Remember to specify the units on answers whenever appropriate.

SCORE: 1 / 20

2 / 20

3 \qquad / 20

4 \qquad / 20

5 \qquad / 20

6 \qquad / 20

7 / 20

8 \qquad / 10

Total: \qquad / 150

Problem 1: Circuit Analysis and Equivalent Circuits [20 points in total]
a) Consider the following circuit:

i) Use a source transformation in order to find $\boldsymbol{i}_{\boldsymbol{x}}$. [$\mathbf{6} \mathbf{p t s}$]

$$
i_{x}=
$$

\qquad
ii) What is the power developed/absorbed by the 5 mA current source? [$\mathbf{3} \mathbf{~ p t s}$]

$$
\text { Power }=
$$

\qquad
[developed, absorbed]
(circle the correct choice)

Problem 1 (continued)
b) Consider the following circuit:

i) Find $V_{\text {out. }}$ [6 pts]

$$
V_{\text {out }}=
$$

\qquad
ii) Draw the Thevenin Equivalent circuit. [5 pts]

Thevenin Equivalent Circuit:

Problem 2: Op Amp Circuit [20 points in total]

a) The following is the circuit model for an op amp circuit operating in its linear region:

Typically, $R_{\text {in }}$ is very large $(\sim 1 \mathrm{M} \Omega)$, A is very large $\left(>10^{4}\right)$, and $R_{\text {out }}$ is very small ($<100 \Omega$).
What type of feedback is used in an op amp circuit, in order to ensure that the op amp will operate in its linear region? Illustrate (with a simple diagram) how this is achieved. [5 pts]

Problem 2 (continued)
b) Consider the following op amp circuit below. You can assume that the op amp is ideal.

i) Find an expression for V_{o}, using superposition. [$\left.\mathbf{1 0} \mathbf{~ p t s}\right]$

$$
V_{o}=
$$

\qquad
ii) Suppose V_{A} is fixed at 1 Volt. Plot V_{o} vs. V_{B}. [5 pts]

Problem 3: First-Order Circuits [20 points in total]
In the circuit below, the switch is open for all $t<0$. The switch is closed at $t=0$, and then it is opened again at $t=10 \mathrm{~ms}$.

i) Write an equation for $v_{c}(t)$, for $0 \leq t \leq 10 \mathrm{~ms}$. [$\mathbf{8} \mathbf{~ p t s]}$

$$
0 \leq t \leq 10 \mathrm{~ms}: v_{c}(t)=
$$

\qquad
ii) Write an equation for $v_{c}(t)$, for $t>10 \mathrm{~ms}$. [$\left.\mathbf{~ p t s}\right]$

$$
t>10 \mathrm{~ms}: v_{c}(t)=
$$

\qquad
iii) Sketch $v_{c}(t)$ for $t>0[4 \mathbf{p t s}]$

Problem 4: pn junctions; diodes [20 points in total]
a) Consider a pn junction formed in the surface of an n -type silicon wafer maintained at $T=300 \mathrm{~K}$. The p and n regions are uniformly doped, as indicated in the figure below:

Schematic cross-sectional view of pn junction

In the p-type region, the electron mobility is $100 \mathrm{~cm}^{2} / V \bullet s$ and the hole mobility $=50 \mathrm{~cm}^{2} / V \bullet s$
i) Estimate the sheet resistance of the p-type region. [$\mathbf{6} \mathbf{~ p t s}$]
(Use the following values of constants: $q=1.6 \times 10^{-19} \mathrm{C}, n_{i}=10^{10} \mathrm{~cm}^{-3}$)

Sheet resistance $=$ \qquad
ii) Suppose the p-type region serves as the drain region of a p-channel MOSFET in a CMOS inverter, and that the n-type substrate is therefore biased at the power-supply voltage $V_{D D}$. How will the pn-junction capacitance change as the PMOSFET is turned on (so that the drain bias is changed from 0 V to $\left.V_{D D}\right)$? Explain briefly. [$\left.4 \mathbf{p t s}\right]$

Problem 4 (continued)

b) Consider the diode circuit below. Assume the diode is a perfect rectifier.

i) Plot $v_{\text {out }}$ vs. $v_{\text {in }}$. [5 pts]

ii) Sketch $v_{\text {out }}$ for the given $v_{\text {in }}(t)$, using the same axes. [$5 \mathbf{~ p t s]}$

Problem 5: MOSFET [20 points in total]

a) Consider an NMOSFET with parameters $W=1 \mu \mathrm{~m}, L=0.1 \mu \mathrm{~m}, k_{n}{ }^{\prime}=10^{-3} \mathrm{~A} / \mathrm{V}^{2}, V_{T}=0.5 \mathrm{~V}$, biased at $\boldsymbol{V}_{\boldsymbol{G S}}=\boldsymbol{V}_{\boldsymbol{D} \boldsymbol{D}}=\mathbf{1} \mathbf{V}$. The areal gate capacitance $C_{o x}=3 \times 10^{-6} \mathrm{~F} / \mathrm{cm}^{2}$.
i) Accurately sketch the $I_{D} v s$. $V_{D S}$ characteristic in the range $0 \leq V_{D S} \leq 1 \mathrm{~V}$, neglecting velocity saturation and channel-length modulation. Indicate the numerical values for the saturation voltage ($V_{D S A T}$) and current ($I_{D S A T}$). [$\mathbf{6} \mathbf{~ p t s] ~}$

ii) Estimate the effective resistance of this MOSFET (for digital circuit applications).
(Again, assume that velocity saturation and channel-length modulation can be neglected. [3 pts]
iii) On the same plot in part (i) above, accurately sketch and label the $I_{D} v s . V_{D S}$ characteristic, taking into account that the electron velocity in the MOSFET channel saturates at $10^{7} \mathrm{~cm} / \mathrm{s}$. [5 pts]

Problem 5 (continued)

b) High drive current ($I_{D S A T}$) is desirable for reduced equivalent resistance, to achieve smaller propagation delay to allow higher-speed circuit operation. Indicate in the table below how you would adjust various MOSFET parameters so as to increase $I_{D S A T}$. Briefly describe the tradeoff or disadvantage involved, if any, for each. (For example, the answer for gate length L is given.) [6 pts]
$\left.\left.\begin{array}{|l|c|c|}\hline \begin{array}{l}\text { MOSFET } \\ \text { Parameter }\end{array} & \begin{array}{l}\text { To increase } \boldsymbol{I}_{\text {DSAT }}, \\ \text { parameter must be }\end{array} & \text { Associated tradeoff or disadvantage }\end{array} \right\rvert\, \begin{array}{l}\text { Gate length } L \\ \hline \text { decreased }\end{array} \begin{array}{c}\text { Subthreshold leakage current increases, so } \\ \text { that static power dissipation increases }\end{array}\right\}$

Problem 6: Logic Circuits [20 points in total]

a) Given the following truth table for the logic function \mathbf{F} :

\mathbf{A}	\mathbf{B}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

i) Write a simple logic expression for \mathbf{F}. [2 pts]

$$
\mathbf{F}=
$$

\qquad
ii) Implement the function \mathbf{F}, using only 2-input NAND gates. [5 pts]

Logic circuit for F :

Problem 6 (continued)

b) Consider the S-R flip-flop circuit below:

The output C is initially equal to 0 , and the output D is initially equal to 1 .
For the given \mathbf{S} and \mathbf{R} timing diagrams below, draw the timing diagrams (for $t>0$) for $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} on the plots provided. [13 pts]

Problem 7: CMOS Technology [20 points in total]

The layout of a CMOS logic gate is shown below:

The following fabrication process (starting with a p-type Si wafer) is used:

1. Thermally grow 700 nm of SiO_{2}.
2. Pattern the SiO_{2} using the n-well mask.
3. Implant phosphorus and perform a high-temperature, long anneal to "drive in" the well to a depth of $1 \mu \mathrm{~m}$.
4. Remove the SiO_{2} (using a highly selective wet etch process which does not etch Si).
5. Grow $0.5 \mu \mathrm{~m}$ of SiO_{2} ("field oxide").
6. Pattern the SiO_{2} using the oxide mask.
7. Thermally grow 10 nm of SiO_{2} ("gate oxide") in the bare regions of the Si .
8. Deposit 200 nm of poly-Si (by CVD).
9. Pattern the poly-Si using the gate mask.
10. Use clear-field select mask to pattern photoresist; implant phosphorus. This will form the $\mathrm{n}+$ source and drain junctions for the n-channel MOSFETs.
11. Use dark-field select mask to pattern photoresist; implant boron. This will form the $\mathrm{p}+$ source and drain junctions for the p-channel MOSFETs.
12. Thermally anneal the wafer in order to activate the implanted dopants. The final source/drain junction depth is 100 nm .
13. Deposit $0.5 \mu \mathrm{~m}$ of SiO_{2} ("passivation oxide").
14. Pattern the deposited SiO_{2} using the contact mask.
15. Deposit $0.5 \mu \mathrm{~m}$ of aluminum.
16. Pattern the aluminum using the metal mask.

Problem 7 (continued)
a) Draw cross-section $A-A^{\prime}$ in the space provided. Identify all layers clearly. [10 pts]
\square

Cross-section $A-A^{\prime}$

b) Draw the circuit schematic, labeling $V_{D D}, G N D, V_{A}, V_{B}$, and OUT. [5 pts]
\square

Circuit Schematic

c) Assuming that $k_{n}{ }^{\prime}=3 k_{p}{ }^{\prime}$, would you expect this logic gate to have comparable worst-case "pull-up"and "pull-down" propagation delays? (Is $t_{p L H} \cong t_{p H L}$?) Justify your answer. [5 pts]

Problem 8: Technology Scaling (Short-Answer Questions) [10 points in total]
a) Explain how transistor scaling improves both the cost (per function) and performance (circuit operating speed) of CMOS integrated circuits. [5 pts]
b) Explain why interconnect delay is becoming more of a concern as CMOS technology advances. [5 pts]

