Final Exam May 18, 2004 Time Allowed: 3 Hours

Solutions

Name:	
Last	First
Student ID #:	, Signature:
Discussion Section:	

This is a closed-book exam, except for use of three 8.5 x 11 inch sheets of your notes. Show all your work to receive full or partial credit. Write your answers clearly in the spaces provided.

Dennis Fack

Mervin

Siddherk

Arko

Steve

Juck

Problem #:	Points:	
1	/10	
2	/10	
3	/10	
4	/15	
5	/10	
6	/10	
7	/15	
Total	/80	

1. (10 points)

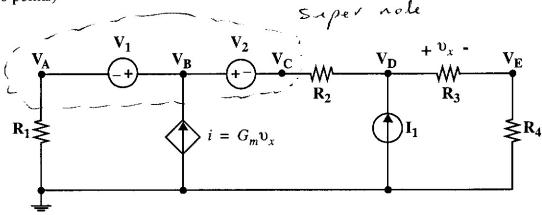
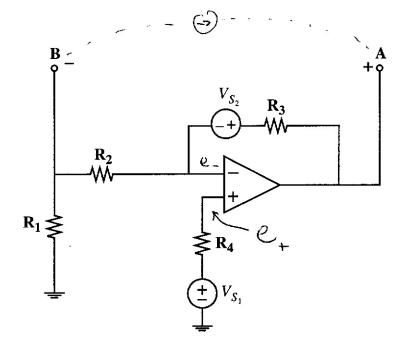


Figure 1

In the circuit of Figure 1, all voltage sources, current sources and resistors are known. Write a set of node equations sufficient to solve the circuit. You must use the labeled node potentials V_A , V_B , V_C , V_D and V_E . Do <u>not</u> solve your equations.


$$\frac{V_A}{R_1} - G_m \left(V_D - V_E \right) + \frac{V_C - V_D}{R_2} = 0$$

$$V_A - V_C = -V_1 + V_2$$

$$\frac{V_0 - V_C}{R_2} + \frac{V_0 - V_E}{R_3} = I,$$

$$\frac{V_{E}-V_{P}}{R_{3}}+\frac{V_{E}}{R_{Y}}=0$$

4 eg's in 4 untenouns { Va, Vc, Va, VE }

IF

Figure 2

The op-amp in Figure 2 is ideal. Determine the Thevenin Equivalent Circuit with respect to the two terminals A and B.

(1)
$$V_{OC}$$
 by superposition: $V_{OC} = \frac{R_c + R_3}{R_1 + R_2} V_{S_1} + V_{S_2}$
 V_{S_1} only: $C_{+} = C_{-} = V_{S_1}$
 $V_{B} = \frac{R_1}{R_1 + R_2} V_{S_1}$
 $V_{A} = \frac{R_2 + R_3}{R_1 + R_2} V_{S_1}$
 $V_{C} = \frac{R_1 + R_2 + R_3}{R_1 + R_2} V_{S_1}$
 $V_{C} = \frac{R_2 + R_3}{R_1 + R_2} V_{S_1}$
 $V_{C} = \frac{R_2 + R_3}{R_1 + R_2} V_{S_1}$
 $V_{S_2} = V_{A_1} = V_{A_2} = \frac{R_2 + R_3}{R_1 + R_2} V_{S_2}$

((i) : $A_{C} = V_{C} = 0 \Rightarrow V_{C} = 0$; $V_{A} = V_{S_2} = 0$
 $V_{C} = V_{C} = 0 \Rightarrow V_{C} = 0$; $V_{C} = V_{C} = \frac{R_2 + R_2}{R_1} (R_1 | R_2) I_{C}$
 $V_{C} = \frac{R_2 + R_3}{R_1 + R_2} V_{C} \Rightarrow V_{C} = \frac{R_2 + R_2}{R_1} (R_1 | R_2) I_{C}$

3. (10 points)

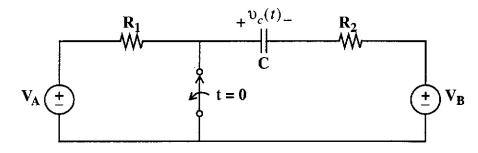


Figure 3

The circuit of Figure 3, is in equilibrium for t < 0. The switch is opened at t = 0.

a) (5 points)

Determine the capacitor voltage $v_c(t)$ for t > 0.

$$V_c(t)$$
 = $(V_{A*}-V_B)$ + $\mathcal{R}(-V_A)e^{-(R_1+R_2)C}$

b) (5 points)

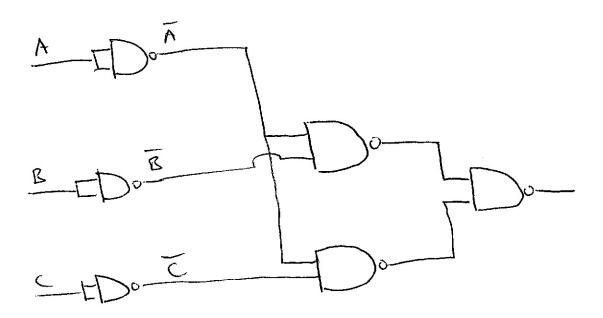
Determine the total energy dissipated in R_1 and R_2 combined, during the transient after the switch is opened at t = 0.

4. (15 points)

A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

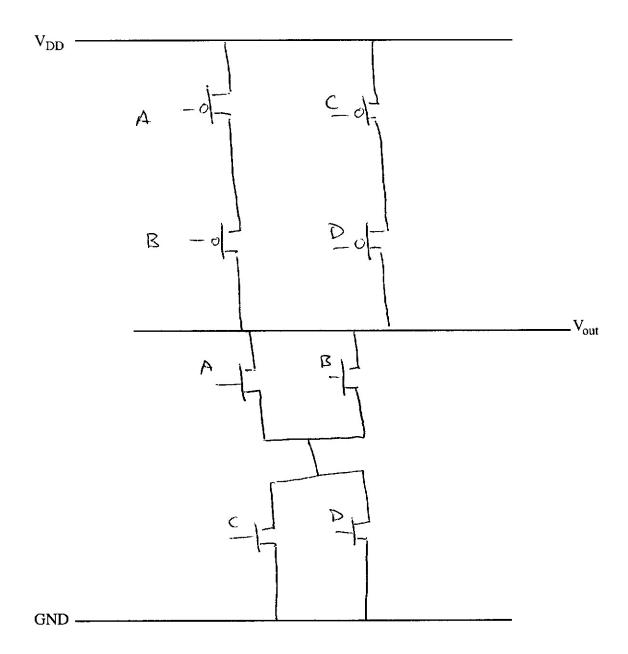
Figure 4

a) (5points) In the truth table of Figure 4, consider A, B and C as inputs and F as output. Write F as a sum-of-products expression.


b) (5 points)
Generate a minimal sum-of-products expression for F.

4. (continued)

c) (5 points)


Draw a logic implementation of your minimal sum-of-products from part (b), using only NAND gates.

5. (10 points)

Consider the logic expression $F = \overline{(A+B)} + \overline{(C+D)}$.

Draw a CMOS implementation of this logic function in the diagram below. You will need to specify the pull-up network and the pull-down network.

$$\overline{F} = (A+B) \cdot (C+D)$$

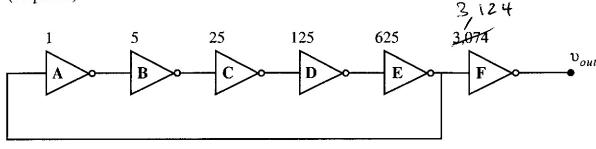


Figure 6

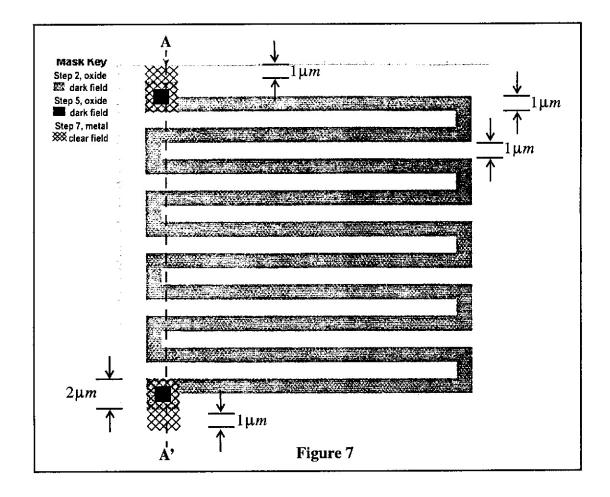
Figure 6 shows a ring oscillator implemented with a buffer structure. Inverter ${\bf A}$ on the far left is a basic inverter with $R_p=6k\Omega$, $R_n=4k\Omega$ and $C_G=5fF$. We only consider gate capacitance in this problem. Inverter ${\bf B}$ is exactly five times bigger (i.e. $W_{n_B}=5W_{n_A}$; $W_{p_B}=5W_{p_A}$) than inverter ${\bf A}$. Analogously, the relative sizes of inverters ${\bf C}$, ${\bf D}$, ${\bf E}$ and ${\bf F}$ are shown in Figure 6. Suppose $V_{iL}=\frac{1}{e}V_{DD}$ and $V_{iH}=\left(1-\frac{1}{e}\right)V_{DD}$.

Determine the frequency of oscillation for the ring oscillator of Figure 6.

For each slage,
$$T_{V_{DD}} \rightarrow V_{iL} = 5.20 pS = 100 pS$$

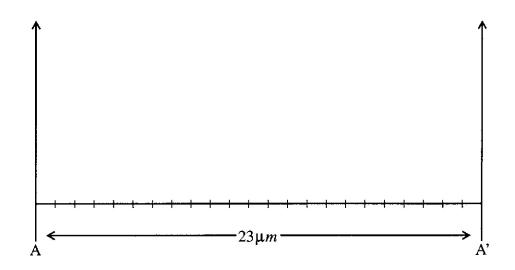
$$T_{O} \rightarrow V_{iH} = 5.30 pS = 150 pS$$

$$T = 5.250 pS$$


$$= 1.25 nS$$

7. (15 points)

A process for fabrication of a diffusion resistor is as follows:


- 0) Begin with lightly doped p-type Si substrate.
- 1) Grow SiO₂ to a thickness of 500 nm.
- 2) Pattern SiO₂ with a dark field mask that defines the resistor pattern.
- 3) Implant donors with a concentration of 10⁸ ions/cm² and anneal uniformly to a depth of 500 nm.
- 4) Deposit SiO₂ to a thickness of 625 nm.
- 5) Pattern SiO₂ with a dark field mask that defines the contacts.
- 6) Deposit Al to a thickness of $1\mu m$.
- 7) Pattern Al with a clear field mask.

Masks for this problem are shown in Figure 7.

a) (10 points)

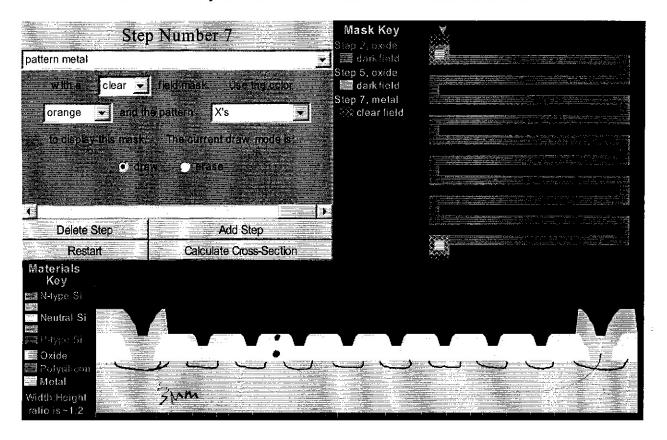
Draw a neat cross-section of the fabricated device for the cross-section A-A' shown in the figure.

b) (5 points)

Determine the sheet resistance of the diffusion layer in this technology.

Take $\mu_n = 300 \frac{cm^2}{v-s}$ and the charge of an electron as $-1.6 \times 10^{-19} C$. Make and explain approximations as necessary.

$$N_{\rm p} = \frac{10^8/{\rm cm}^2}{t}$$
 $t = depth$


$$\sigma t = 300 \frac{\text{cm}^2}{\text{V-S}} \cdot (1.6 - 10^{-19} \text{c}) \cdot 10^8 / \text{cm}^2$$

$$= 4.8 \cdot 10^{-9} \Rightarrow R_s = 0.2 \cdot 10^9 = 2.10^8$$

7 (a)

SIMPLer version 1.1

Too big? Try hiding the button and location gadgets in your browser. Too small? Try the 800x600 version or the 1000x760 version

Help file