# UNIVERSITY OF CALIFORNIA <br> College of Engineering <br> Department of Electrical Engineering and Computer Sciences 

EECS 40
Fall 2003
Introduction to Microelectronic Circuits
Prof. King

## MIDTERM EXAMINATION \#2

November 3, 2003
Time allotted: 50 minutes

NAME:
(print)
$\qquad$ , $\qquad$ Last First

Signature: $\qquad$ STUDENT ID\#: $\qquad$

Discussion Section: $\qquad$

1. This is a CLOSED BOOK exam. However, you may use 2 sheets of notes and a calculator.
2. SHOW YOUR WORK or REASONING on this exam. (Make your methods clear to the grader.)
3. Write your answers clearly (legibly) in the spaces (lines, boxes, or plots) provided.
4. Remember to specify the units on answers whenever appropriate.

SCORE: 1 $\qquad$ / 16

2 $\qquad$ / 17

3 $\qquad$ / 17

Total: $\qquad$ / 50

Problem 1: Energy-Storage Elements and $1^{\text {st }}$-Order Circuits [16 points in total]
a) Consider the capacitive voltage-divider circuit below. Find $V_{\text {out }}$. How will $V_{\text {out }}$ change if a small load capacitance $C_{\text {load }}<2 \mu \mathrm{~F}$ is connected between terminals $\boldsymbol{a}$ and $\boldsymbol{b}$ ? [4 pts]


$$
V_{\text {out }}=
$$

$\qquad$
$V_{\text {out }}$ will [increase, decrease, not change] (circle one) when $C_{\text {load }}$ is connected, because
b) Consider the following RC circuit:


Provide a physical reason why it takes longer for $v_{c}$ to reach its final value if $R$ is increased.
(Why is the characteristic time constant $\tau$ proportional to $R$ ?) [2 pts]
$v_{c}$ will take longer to reach its final value if $R$ is increased because

## Problem 1 (continued)

c) Assume that the circuit below is operating in steady state with the switch open for $t<0$. Find and accurately sketch $v(t)$ for all $t$. [10 pts]


For $\boldsymbol{t}<\mathbf{0}: v(t)=$ $\qquad$ . For $\boldsymbol{t}>\mathbf{0}: v(t)=$ $\qquad$


Problem 2: Semiconductor Materials and Devices [17 points in total]
a) Consider a Si sample maintained at $T=300 \mathrm{~K}$, uniformly doped with Arsenic atoms to a concentration $3 \times 10^{16} \mathrm{~cm}^{-3}$. The electron mobility $=1000 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$; hole mobility $=400 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$. i) Estimate the resistivity of this sample. (Use $q=1.6 \times 10^{-19} \mathrm{C}$ in your calculation.) [4 pts]

```
resistivity =
```

$\qquad$
ii) How will the resistivity of this sample change if it were to be doped additionally with $3 \times 10^{16} \mathrm{~cm}^{-3}$ Phosphorus atoms? [ 3 pts ]

The resistivity will [increase, decrease, not change] (circle one) by a factor that is [greater than, less than, equal to] (circle one) 2 when phosphorus is added because
b) Explain (using 1 or 2 sentences) why a pn junction has capacitance. [2 pts]

A pn junction has capacitance because

## Problem 2 (continued)

c) Assume the diodes in the circuit below can be modeled as perfect rectifiers.

i) For what values of $V_{\text {in }}$ is D1 on? Explain your reasoning. [3 pts]

D 1 is on for $V_{\text {in }}$ $\qquad$ because
$\qquad$
$\qquad$
ii) For what values of $V_{\text {in }}$ is D2 on? Explain your reasoning. [2 pts]

D 2 is on for $V_{\text {in }}$ $\qquad$ because
$\qquad$
$\qquad$
iii) Accurately plot $V_{\text {out }} v s$. $V_{\text {in }}$ on the axes provided. [3 pts]


Problem 3: MOSFET and Common-Source Amplifier [17 points in total]
a) The following is the $i_{D}-v_{D S}$ characteristic of an n-channel MOSFET:


Indicate how this characteristic would change (by drawing the modified $i_{D}-V_{D S}$ characteristic with appropriate changes in $I_{D S A T}, V_{D S A T}$, and slope at small values of $v_{D S}$ ):
i) when $V_{T}$ is lowered - use a labeled solid line on the plot above [2 pts]
ii) when channel-length modulation is significant - use a labeled dashed line on the plot above [2 pts]
iii) when the current is limited by velocity saturation, rather than pinch-off - use a labeled dotted line on the plot above [2 pts]

## Problem 3 (continued)

b) Below to the left is the $i_{D} v s$. $v_{D S}$ characteristic for a long n-channel MOSFET with $V_{T}=1 \mathrm{~V}$.



What is $V_{G S}$ ? [2 pts]

$$
V_{G S}=
$$

$\qquad$
c) Suppose the MOSFET in part (b) is used in the amplifier circuit shown above to the right.
i) Draw the load line on the MOSFET $i_{D}-v_{D S}$ plot (above to the left). [ $\mathbf{3} \mathbf{~ p t s}$ ]
ii) In what region is the MOSFET operating? [2 pts]

The MOSFET is operating in the [linear, saturation, cutoff] (circle one) region because
iii) What is the incremental change in the output voltage (i.e. $v_{o u t}$ ) for a -1 mV change in the input voltage (i.e. $v_{g s}=-1 \mathrm{mV}$ )? [4 pts]

