Name:	Solotions
	Lab TA: Dan Bart Nir Konrad Yu Ching
EE 40	• • • • • • • • • • • • • • • • • • •
idterm 2	

M

October 17, 2002

PLEASE WRITE YOUR NAME ON EACH ATTACHED PAGE PLEASE SHOW YOUR WORK TO RECEIVE PARTIAL CREDIT

Problem 1:	10 Points Possible	<u></u>	
Problem 2:	5 Points Possible		
Problem 3:	15 Points Possible		
Problem 4:	10 Points Possible		
Problem 5:	10 Points Possible	-,. ··-	
Problem 6:	15 Points Possible	······································	
Problem 7:	15 Points Possible	.J	
Problem 8:	5 Points Possible		
Problem 9:	15 Points Possible		
Problem 10): 10 Points Possible		TOTAL: 110 Points Possible

Name: 561041005

Problem 1: 10 Points Possible

Perform nodal analysis on the circuit below. This means write a KCL equation for each node with unknown voltage. DO NOT SIMPLIFY the circuit. DO NOT SOLVE the KCL equations.

Required:
$$KVL @ V_{3}$$
:
$$\frac{V_{1}-V_{X}}{R_{1}}-I_{X}+\frac{V_{1}}{R_{4}}+\frac{V_{1}-V_{Y}}{R_{5}}=0$$
Optional: $KVL @ V_{2}$:
$$\frac{V_{2}-V_{X}}{R_{3}}+I_{X}=0$$

Problem 2: 5 Points Possible

In nodal analysis, when is a supernode needed? Why is a supernode needed?

A supernode is needed when there is a "floating" voltage source (Neither terminal of the source is at ground). The source makes - of the source is at ground). The source makes - it difficult to write KCL equations at its terminal nodes because it has no V-I relationship (urrent is unknown). KCL is possible after enclosing the source unknown). KCL is possible after enclosing the source

Problem 3: 15 Points Possible

- a) Find the Thevenin equivalent voltage V_T with respect to a and b. Express V_T in terms of node voltages. (5 Points Possible)
- b) Find the Thevenin equivalent resistance R_T. DO NOT INCLUDE || symbol in final answer; write the full mathematical expression. (10 Points Possible)

a)
$$V_{7} = V_{ab} = V_{7} - V_{7}$$

b) Deadivate independent sources.

Problem 4: 10 Points Possible

Suppose I have a black-box circuit (I can't see exactly what's inside) but I know it only contains resistors and linear dependent sources. The controlling voltages and currents for the dependent sources are also in the box.

I perform one experiment: When I attach a 5 V battery as shown, I measure a 200 mA current in the direction shown. The internal resistance of the battery is 4 Ω and the internal resistance of the DMM is 1 Ω .

Can I find the Thevenin equivalent of the black-box circuit with this information? If yes, find the Thevenin equivalent. If no, explain why not.

Since there are only dependent sources of resistors, No independent sources,

Problem 5: 10 Points Possible

Find the Thevenin and Norton equivalents (if possible) for the following circuits: (3 Points Possible for each Thevenin, 2 Points Possible for each Norton)

Problem 6: 15 Points Possible

For the ideal operational amplifier circuit below, find V_0 in terms of V_1 and V_2 . Assume that the operational amplifier is operating linearly (ignore the rails).

$$\begin{aligned}
\frac{1}{2} & \text{KVL on output loops} \\
-V_0 & -15 \text{KT}_F + V_{RZ} = 0 \\
V_0 & = V_{RZ} - 15 \text{KT}_F \\
&= V_Z - 15 \text{K} \left(\frac{V_1}{5 \text{K}} - \frac{V_2}{10 \text{K}} \right) \\
&= V_Z - 3 V_1 + 1.5 V_Z \\
&= \left(\frac{2}{2} V_2 - 3 V_1 \right)
\end{aligned}$$

Problem 7: 15 Points Possible

Design an operational amplifier circuit that has an output voltage $V_0 = 3 \ V_2 - 5 \ V_1$. The input voltage sources V_1 and V_2 cannot be detached from ground, and each have their negative terminals at ground. Assume that your amplifier is operating linearly.

You will lose 5 points if you use more than one differential amplifier. If you are desperate, the instructor will "sell" you a hint for points.

desperate, the instructor will "sell you a nint for points.

$$3 V_2 - 5 V_1$$
 has same form as Problem (b)

 V_2 on non-invarting, V_1 on inverting terminal)

Use same circuit, change values:

Ry

Whany possible answers!

 $V_0 = V_2 \frac{R_2}{R_1 + R_2} - \frac{R_y}{R_3} \left(V_1 - V_2 \frac{R_2}{R_1 + R_3} \right) \frac{1}{R_3}$
 $V_1 = \frac{R_2}{V_2} - \frac{R_2}{R_1 + R_2} = \frac{R_y}{R_3} \left(V_1 - V_2 \frac{R_2}{R_1 + R_3} \right) \frac{1}{R_3}$
 $V_2 = V_3 \cdot \frac{R_2}{R_1 + R_2}$
 $V_3 = V_4 \cdot \frac{R_2}{R_1 + R_2} = \frac{V_1 - V_2}{R_2 + R_2} = \frac{V_2}{R_1 + R_2} = \frac{V_2}{R_2} = \frac{V_2}{R_3} = \frac{V_3}{R_4} = \frac{V_4}{R_3} = \frac{V_4}{R_3} = \frac{V_4}{R_4} = \frac{V_4}{R_$

Problem 8: 5 Points Possible

Suppose that we want to "clean up" a logic signal by transforming input voltages over 2.5 V (the threshold voltage) to 5 V (logic 1) as output and voltages under 2.5 V to logic 0. Design a differential amplifier circuit that will perform this function. You may use one ideal differential amplifier; $R_i=\infty$, $R_0=0$ Ω and gain $A=\infty$. You must specify the rail voltages for this amplifier.

Problem 9: 15 Points Possible

Now suppose that your differential amplifier circuit from Problem 8 has a finite gain A = 10,000. For the input $v_i(t)$ defined below, determine the propagation delay t_p , where t_p = time output reaches 50% of final value - time input reaches 50% of final value.

$$v_i(t) = \begin{cases} & 0 \quad \text{for } t < 0 \\ & t \quad \text{for } 0 \le t \le 5 \\ & 5 \quad \text{for } t > 5 \end{cases}$$

time input reaches 50% of f.v. is
time
$$V_1(E) = 2.5 V$$

 $E = 2.5 5$ (from above definition)

During transition, Vout has equation
$$V_{out}(t) = A(V_p - V_n) = 10^4 (V_i(t) - 2.5 \text{ U})$$

$$= 10^4 V_i(t) - 2.5 \cdot 10^4$$

Want Vout(t) = 2,5

$$10^{4} \text{V}_{1}(t) = 2.5 + 2.5 \cdot 10^{4}$$

 $\text{V}_{1}(t) = 2.5 + 2.5 \cdot 10^{4}$
this occors when $t = 2.5 + 2.5 \cdot 10^{-4}$

différence in lines : 2.5+2.5.10-4-2.5= 250 ms

Problem 10: 10 Points Possible

Find the time constant for the RC circuit below. DO NOT INCLUDE || symbol in final answer; write the full mathematical expression.

