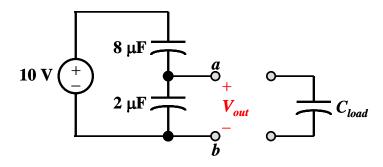
UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 40 Fall 2003 Introduction to Microelectronic Circuits Prof. King

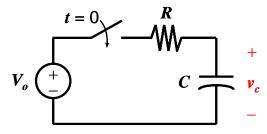
MIDTERM EXAMINATION #2


November 3, 2003 Time allotted: 50 minutes

NAME:			
(print)	Last	›	First
Signature:			_ STUDENT ID#:
Discussion Section: _			
1. This is a CLOSED	BOOK exa	m. However,	you may use 2 sheets of notes and a calculator.
2. SHOW YOUR WO (Make your method			n this exam.
3. Write your answer	s clearly (le	gibly) in the	spaces (lines, boxes, or plots) provided.
4. Remember to specif	y the units o	on answers wh	nenever appropriate.
:	SCORE:	1	/ 16
		2	/ 17
		3	/ 17

Total: _____/ 50

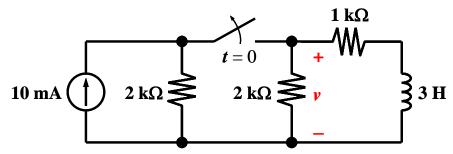
Problem 1: Energy-Storage Elements and 1st-Order Circuits [16 points in total]


a) Consider the capacitive voltage-divider circuit below. Find V_{out} . How will V_{out} change if a small load capacitance $C_{load} < 2 \, \mu \text{F}$ is connected between terminals a and b? [4 pts]

$$V_{out} =$$

 V_{out} will [increase, decrease, not change] (circle one) when C_{load} is connected, because

b) Consider the following RC circuit:

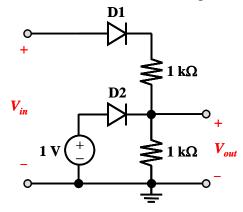



Provide a <u>physical</u> reason why it takes longer for v_c to reach its final value if R is increased. (Why is the characteristic time constant τ proportional to R?) [2 pts]

 v_c will take longer to reach its final value if R is increased because

Problem 1 (continued)

c) Assume that the circuit below is operating in steady state with the switch open for t < 0. Find and accurately sketch v(t) for all t. [10 pts]

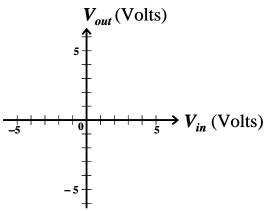


<u>Problem 2</u> : Semicondu	actor Materials and I	Devices [17	points in	total]
------------------------------	-----------------------	-------------	-----------	--------

a) Consi	der a Si sample maintained at $T = 300$ K, uniformation 3×10^{16} cm ⁻³ . The electron mobility = 10	nly doped with Arsenic atoms to a
i)	Estimate the resistivity of this sample. (Use q	$= 1.6 \times 10^{-19} \text{ C in your calculation.) } [4 \text{ pts}]$
		resistivity =
ii)	How will the resistivity of this sample change 3×10^{16} cm ⁻³ Phosphorus atoms? [3 pts]	if it were to be doped additionally with
	5×10 cm Phosphorus atoms? [5 pts]	
The resis	tivity will [increase, decrease, not change] (circle	e one)
by a facto	or that is [greater than, less than, equal to] (circle	one) 2 when phosphorus is added because
b) Evels	in (voime 1 on 2 contamoss) why a majuration ha	a conscitance [2 ntal
u) Expia	in (using 1 or 2 sentences) why a pn junction ha	s capacitance. [2 pts]
A pn jund	ction has capacitance because	

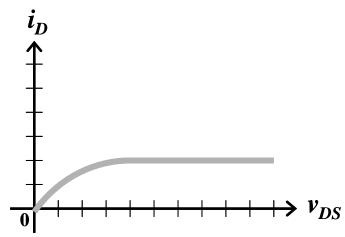
Problem 2 (continued)

c) Assume the diodes in the circuit below can be modeled as perfect rectifiers.


i) For what values of V_{in} is D1 on? Explain your reasoning. [3 pts]

D1 is on for V_{in} ______ because

ii) For what values of V_{in} is D2 on? Explain your reasoning. [2 pts]

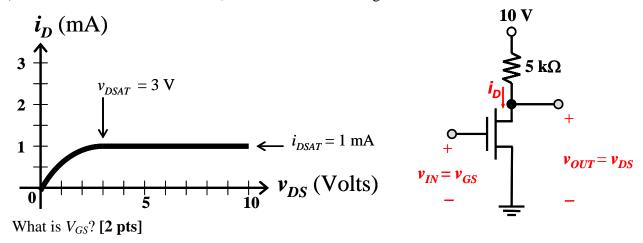

D2 is on for V_{in} ______ because

iii) Accurately plot V_{out} vs. V_{in} on the axes provided. [3 pts]

Problem 3: MOSFET and Common-Source Amplifier [17 points in total]

a) The following is the i_D - v_{DS} characteristic of an n-channel MOSFET:

Indicate how this characteristic would change (by drawing the modified i_D - v_{DS} characteristic with appropriate changes in I_{DSAT} , V_{DSAT} , and slope at small values of v_{DS}):


i) when V_T is lowered – use a labeled solid line on the plot above [2 pts]

ii) when channel-length modulation is significant – use a labeled dashed line on the plot above [2 pts]

iii) when the current is limited by velocity saturation, rather than pinch-off – use a labeled dotted line on the plot above [2 pts]

Problem 3 (continued)

b) Below to the left is the i_D vs. v_{DS} characteristic for a long n-channel MOSFET with $V_T = 1$ V.

 $V_{GS} =$ _____

- c) Suppose the MOSFET in part (b) is used in the amplifier circuit shown above to the right.
 - i) Draw the load line on the MOSFET i_D - v_{DS} plot (above to the left). [3 pts]
 - ii) In what region is the MOSFET operating? [2 pts]

The MOSFET is operating in the [linear, saturation, cutoff] (circle one) region because

iii) What is the incremental change in the output voltage (*i.e.* v_{out}) for a -1 mV change in the input voltage (*i.e.* $v_{gs} = -1$ mV)? [4 pts]

 $v_{out} =$