UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 40

Spring 2000

Introduction to Microelectronic Devices

MIDTERM EXAMINATION #1

Time allotted: 80 minutes

NAME:					
(print)	Last	First	Signature		
STUDENT	ID#:				

- 1. This is a **CLOSED BOOK EXAM**. However, you may use 1 page of notes and a calculator.
- 2. Show your work on this exam. MAKE YOUR METHODS CLEAR TO THE GRADER.
- 3. Write your answers clearly in the spaces (lines, boxes or plots) provided. Numerical answers must be accurate to within 10% unless otherwise noted.
- 4. Remember to specify the units on answers whenever appropriate.
- 5. Do not unstaple the pages of this exam.

Г	otal:	/ 100
	4	/ 25
	3	/ 25
	2	/ 30
SCORE:	1	/ 20

Problem 1: Logic Gates and Timing Diagrams [25 points]

Consider the following digital logic circuit:

a) Fill out the truth table for the logic function G. [8 pts]

A	В	G
0	0	
0	1	
1	0	
1	1	

b) Write a simple logical expression for the function G. [5 pts]

~			
G =			

c) How many unit gate delays are there between the inputs (A and B) and the output (G)? [2 pts] (In other words, how many unit gate delays must you wait, after changing A and/or B, before you can trust the value of G to be valid?)

<u>Problem 1</u> (continued)

- d) Assume each logic gate has a unit gate delay $\tau = 100$ ps.
 - Draw the timing diagrams for t=0 to t=700 ps, for the given logic input values A and B. [10 pts] logic value of A

Problem 2: Resistive Circuits [30 points]

a) Find the equivalent resistance R_{ab} for the following circuit. [6 pts]

b) Suppose you need a 6 k Ω resistor for your Tutebot project, but your TA gives you only a supply of 10 k Ω resistors. Being a clever Cal student, how would you connect several 10 k Ω resistors together, to achieve a 6 k Ω resistance? [7 pts]

Problem 2 (continued)

c) Consider the following circuit:

i) Find V_{cd} . [3 pts]

ii) Find the power developed/absorbed by the current source, P_I . [3 pts]

iii) Indicate in the table below (by checking the appropriate boxes) how various circuit parameters would change if the terminals **c** and **d** were to be shorted together. Justify your answers. **[6 pts]**

D. (Value will:			
Parameter	increase	decrease	not change	Brief Explanation/Justification
V _{bd}				
I _I				
Power developed by voltage source				

iv) What is the value of I_3 when the terminals c and d are shorted together? [5 pts]

Problem 3: Nodal Analysis [20 points]

a) In the circuit below, the independent source values and resistances are known. Use the nodal analysis technique to write 3 equations sufficient to solve for V_a , V_b , and V_c . To receive credit, you must write your answer in the box below. [10 pts] DO NOT SOLVE THE EQUATIONS!

Write the nodal equations here:

Problem 3 (continued)

b) Similarly to part (a), use the nodal analysis technique to write 3 equations sufficient to solve for V_a, V_b, and V_c. To receive credit, you must write your answer in the box below. [10 pts] DO NOT SOLVE THE EQUATIONS!

Write the nodal equations here:

<u>Problem 4</u>: Thevenin and Norton Equivalent Circuits [25 points]

a) Find the Thevenin Equivalent Circuit for the following circuit. [10 pts]

b) Use the source transformation method to obtain the Norton Equivalent Circuit for the circuit in part (a). **[5 pts]**

<u>Problem 4</u> (continued)

c) The Thevenin Equivalent Circuit for a certain linear circuit is given below. Plot the current (*I*) versus the output voltage (*V*) for the circuit, **labelling the y-intercept and x-intercept**. [5 pts]

d) The circuit in part (c) is connected to a 1 kΩ load resistor (placed between the terminals a and b). Find the power absorbed in the load resistor, P_{1k}. [5 pts]

Page 10