UNIVERSITY OF CALIFORNIA, BERKELEY
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EECS 40
Introduction to Microelectronic Devices

Spring 2000
Prof. King

MIDTERM EXAMINATION \#2
April 6, 2000
Time allotted: 80 minutes

NAME:
(print)
\qquad
STUDENT ID\#: \qquad

1. This is a CLOSED BOOK EXAM. However, you may use 2 pages of notes and a calculator.
2. Show your work on this exam.

MAKE YOUR METHODS CLEAR TO THE GRADER.
3. Write your answers clearly in the spaces (lines, boxes or plots) provided.

Numerical answers must be accurate to within $\mathbf{1 0 \%}$ unless otherwise noted.
4. Remember to specify the units on answers whenever appropriate.
5. Do not unstaple the pages of this exam.

SCORE:
1 \qquad / 20

2 / 30

3 / 25

4 \qquad / 25

Total: \qquad / 100

Physical Constants

Description

Electronic charge
Permittivity of vacuum
Boltzmann's constant
Thermal voltage at 300 K

Symbol
q ε_{0} k $k T / q$

Value
$1.602 \times 10^{-19} \mathrm{C}$
$8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$
$8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
0.026 V

Properties of Silicon at 300 K

Description
Thermal velocity
Relative permittivity Intrinsic carrier density

Symbol
$v_{\text {th }}$
ε_{r}
n_{i}
11.7

Value
$10^{7} \mathrm{~cm} / \mathrm{s}$
$1.45 \times 10^{10} \mathrm{~cm}^{-3}$

Electron and Hole Mobilities in Silicon at 300K

Conversion Factors

$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mu \mathrm{~m}=10^{-4} \mathrm{~cm}=10^{-6} \mathrm{~m}$
Farad $=$ Coulomb $/$ Volt
Henry $=$ Volt $/($ Ampere $/$ second $)$
Watt $=$ Volt x Ampere
Joule $=$ Watt x second

Problem 1 Circuits with Dependent Sources [20 points]

a) Find V_{o}. [4 pts]

b) In the circuit below, the independent source values and resistances are known.

Use the nodal analysis technique to write $\mathbf{3}$ equations sufficient to solve for $\boldsymbol{V}_{a}, V_{b}$, and $\boldsymbol{V}_{\boldsymbol{c}}$.
To receive credit, you must write your answer in the box below. [$\mathbf{6} \mathbf{~ p t s]}$ DO NOT SOLVE THE EQUATIONS!

Write the nodal equations here:

Problem 1 (continued)

c) Consider the following circuit:

i) Find the voltage $V_{a b}$. $\left.\mathbf{5} \mathbf{~ p t s}\right]$

ii) What is the current i_{a} when the terminals \mathbf{a} and \mathbf{b} are shorted together? [$\left.\mathbf{3} \mathbf{p t s}\right]$

iii) Draw the Thevenin Equivalent Circuit. [2 pts]

Problem 2: Transient Response [30 points]

a) In the circuit below, the switch has been in the closed position for a long time.

i) Find the value of v_{R} just after the switch opens $\left(t=0^{+}\right)$. [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

ii) How much energy is dissipated in the $1 \mathrm{k} \Omega$ resistor after the switch is opened? [$\mathbf{2} \mathbf{~ p t s}$]

Energy dissipated $=$ \qquad
b) In the circuit below, the $5 \mu \mathrm{~F}$ capacitor is initially charged to $5 \mathrm{~V}\left(v_{C l}\left(0^{-}\right)=5 \mathrm{~V}\right.$). (The $1 \mu \mathrm{~F}$ capacitor is initially uncharged.) The switch is then closed at time $t=0$. What is the final value of $v_{C l}$? [5 pts]

Final value of $v_{C l}=$ \qquad

Problem 2 (continued)

c) The following is a circuit model for an NMOS inverter, in which the transistor is turned on at time $t=0$:

i) What is the value of v_{C} at $t=0^{-}$? [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

ii) What is the value of $i_{N M O S}$ at $t=0^{+}$? [$\mathbf{3} \mathbf{~ p t s] ~}$

iii) What is the final value of v_{C} ? [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

iv) Neatly sketch the graph of $i_{N M O S}$ for all \boldsymbol{t}, labelling the axes. [$\mathbf{5} \mathbf{~ p t s]}$

v) Write an equation for $i_{N M O S}$ as a function of time, for $t>0$. [6 pts]
\square

Problem 3: Op-Amp Circuits [25 points]

Assume the op-amps in this problem are ideal.
a) Consider the following circuit:

i) Find an expression for V_{o} as a function of V_{a}. [6 pts]
\qquad
ii) Find V_{o} for $V_{a}=2 \mathrm{~V}$. [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

$$
V_{o}=
$$

iii) For what values of V_{a} will the op-amp be saturated? [6 pts]

Values of V_{a} for which the op-amp will be saturated:

Problem 3 (continued)

b) In the following circuit, the op-amps are operating linearly.

Find $V_{\text {out }}$ in terms of $V_{1}, V_{2}, R_{1}, R_{2}, R_{3}, R_{4}$. [10 pts]
(Hint: The superposition method might be helpful here.)

Problem 4: Semiconductor properties; p-n diodes [25 points]

a) Consider a silicon sample maintained at 300 K under equilibrium conditions, uniformly doped with $1 \times 10^{16} \mathrm{~cm}^{-3}$ phosphorus atoms. The surface region of the sample is additionally doped uniformly with $5 \times 10^{16} \mathrm{~cm}^{-3}$ boron atoms, to a depth of $1 \mu \mathrm{~m}$, as shown in the figure below.

Schematic cross-sectional view of silicon sample
i) In the figure above, indicate the type of the regions (I and II) by labelling them as " n " or " p " type. [2 pts]
ii) What are the electron and hole concentrations in Region I? [5 pts]

iii) What is the sheet resistance of Region I? [$\mathbf{5} \mathbf{~ p t s]}$

iv) Suppose any voltage between 0 V and 5 V can be applied to Region I. What fixed voltage ("bias") would you apply to Region II, to guarantee that no current would ever flow between Region I and Region II? Briefly explain your answer. [3 pts]

Problem 4 (continued)

b) If a diode is operated only within a small range of forward-bias voltages, its behavior can be accurately modelled by a resistor, whose value is dependent on the bias voltage. Derive an expression for the diode "small-signal" resistance:

$$
R_{\text {diode }}=\left(\frac{\partial I}{\partial V}\right)^{-1}
$$

in terms of the saturation current I_{s}, the bias voltage V, and the absolute temperature T. [5 pts]

c) Plot v_{L} vs. $V_{I N}$ for $\mathbf{- 1 0} \mathbf{V}<V_{I N}<\mathbf{1 0} \mathrm{V}$ on the axes provided, for the circuit below. Note that the diode is a perfect rectifier. Label the axes. [5 pts]

UNIVERSITY OF CALIFORNIA, BERKELEY
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EECS 40
Introduction to Microelectronic Devices

Spring 2000
Prof. King

MIDTERM EXAMINATION \#2
April 6, 2000
Time allotted: 80 minutes

NAME:
(print)
\qquad
STUDENT ID\#: \qquad

1. This is a CLOSED BOOK EXAM. However, you may use 2 pages of notes and a calculator.
2. Show your work on this exam.

MAKE YOUR METHODS CLEAR TO THE GRADER.
3. Write your answers clearly in the spaces (lines, boxes or plots) provided.

Numerical answers must be accurate to within $\mathbf{1 0 \%}$ unless otherwise noted.
4. Remember to specify the units on answers whenever appropriate.
5. Do not unstaple the pages of this exam.

SCORE:
1 \qquad / 20

2 / 30

3 / 25

4 \qquad / 25

Total: \qquad / 100

Physical Constants

Description

Electronic charge
Permittivity of vacuum
Boltzmann's constant
Thermal voltage at 300 K

Symbol
q ε_{0} k $k T / q$

Value
$1.602 \times 10^{-19} \mathrm{C}$
$8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$
$8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
0.026 V

Properties of Silicon at 300 K

Description
Thermal velocity
Relative permittivity Intrinsic carrier density

Symbol
$v_{\text {th }}$
ε_{r}
n_{i}
11.7

Value
$10^{7} \mathrm{~cm} / \mathrm{s}$
$1.45 \times 10^{10} \mathrm{~cm}^{-3}$

Electron and Hole Mobilities in Silicon at 300K

Conversion Factors

$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mu \mathrm{~m}=10^{-4} \mathrm{~cm}=10^{-6} \mathrm{~m}$
Farad $=$ Coulomb $/$ Volt
Henry $=$ Volt $/($ Ampere $/$ second $)$
Watt $=$ Volt x Ampere
Joule $=$ Watt x second

Problem 1 Circuits with Dependent Sources [20 points]

a) Find V_{o}. [4 pts]

b) In the circuit below, the independent source values and resistances are known.

Use the nodal analysis technique to write $\mathbf{3}$ equations sufficient to solve for $\boldsymbol{V}_{a}, V_{b}$, and $\boldsymbol{V}_{\boldsymbol{c}}$.
To receive credit, you must write your answer in the box below. [$\mathbf{6} \mathbf{~ p t s]}$ DO NOT SOLVE THE EQUATIONS!

Write the nodal equations here:

Problem 1 (continued)

c) Consider the following circuit:

i) Find the voltage $V_{a b}$. $\left.\mathbf{5} \mathbf{~ p t s}\right]$

ii) What is the current i_{a} when the terminals \mathbf{a} and \mathbf{b} are shorted together? [$\left.\mathbf{3} \mathbf{p t s}\right]$

iii) Draw the Thevenin Equivalent Circuit. [2 pts]

Problem 2: Transient Response [30 points]

a) In the circuit below, the switch has been in the closed position for a long time.

i) Find the value of v_{R} just after the switch opens $\left(t=0^{+}\right)$. [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

ii) How much energy is dissipated in the $1 \mathrm{k} \Omega$ resistor after the switch is opened? [$\mathbf{2} \mathbf{~ p t s}$]

Energy dissipated $=$ \qquad
b) In the circuit below, the $5 \mu \mathrm{~F}$ capacitor is initially charged to $5 \mathrm{~V}\left(v_{C l}\left(0^{-}\right)=5 \mathrm{~V}\right.$). (The $1 \mu \mathrm{~F}$ capacitor is initially uncharged.) The switch is then closed at time $t=0$. What is the final value of $v_{C l}$? [5 pts]

Final value of $v_{C l}=$ \qquad

Problem 2 (continued)

c) The following is a circuit model for an NMOS inverter, in which the transistor is turned on at time $t=0$:

i) What is the value of v_{C} at $t=0^{-}$? [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

ii) What is the value of $i_{N M O S}$ at $t=0^{+}$? [$\mathbf{3} \mathbf{~ p t s] ~}$

iii) What is the final value of v_{C} ? [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

iv) Neatly sketch the graph of $i_{N M O S}$ for all \boldsymbol{t}, labelling the axes. [$\mathbf{5} \mathbf{~ p t s]}$

v) Write an equation for $i_{N M O S}$ as a function of time, for $t>0$. [6 pts]
\square

Problem 3: Op-Amp Circuits [25 points]

Assume the op-amps in this problem are ideal.
a) Consider the following circuit:

i) Find an expression for V_{o} as a function of V_{a}. [6 pts]
\qquad
ii) Find V_{o} for $V_{a}=2 \mathrm{~V}$. [$\left.\mathbf{3} \mathbf{~ p t s}\right]$

$$
V_{o}=
$$

iii) For what values of V_{a} will the op-amp be saturated? [6 pts]

Values of V_{a} for which the op-amp will be saturated:

Problem 3 (continued)

b) In the following circuit, the op-amps are operating linearly.

Find $V_{\text {out }}$ in terms of $V_{1}, V_{2}, R_{1}, R_{2}, R_{3}, R_{4}$. [10 pts]
(Hint: The superposition method might be helpful here.)

Problem 4: Semiconductor properties; p-n diodes [25 points]

a) Consider a silicon sample maintained at 300 K under equilibrium conditions, uniformly doped with $1 \times 10^{16} \mathrm{~cm}^{-3}$ phosphorus atoms. The surface region of the sample is additionally doped uniformly with $5 \times 10^{16} \mathrm{~cm}^{-3}$ boron atoms, to a depth of $1 \mu \mathrm{~m}$, as shown in the figure below.

Schematic cross-sectional view of silicon sample
i) In the figure above, indicate the type of the regions (I and II) by labelling them as " n " or " p " type. [2 pts]
ii) What are the electron and hole concentrations in Region I? [5 pts]

iii) What is the sheet resistance of Region I? [$\mathbf{5} \mathbf{~ p t s]}$

iv) Suppose any voltage between 0 V and 5 V can be applied to Region I. What fixed voltage ("bias") would you apply to Region II, to guarantee that no current would ever flow between Region I and Region II? Briefly explain your answer. [3 pts]

Problem 4 (continued)

b) If a diode is operated only within a small range of forward-bias voltages, its behavior can be accurately modelled by a resistor, whose value is dependent on the bias voltage. Derive an expression for the diode "small-signal" resistance:

$$
R_{\text {diode }}=\left(\frac{\partial I}{\partial V}\right)^{-1}
$$

in terms of the saturation current I_{s}, the bias voltage V, and the absolute temperature T. [5 pts]

c) Plot v_{L} vs. $V_{I N}$ for $\mathbf{- 1 0} \mathbf{V}<V_{I N}<\mathbf{1 0} \mathrm{V}$ on the axes provided, for the circuit below. Note that the diode is a perfect rectifier. Label the axes. [5 pts]

