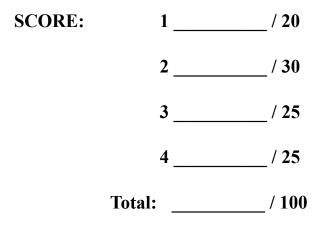
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 40

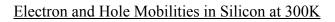

Introduction to Microelectronic Devices

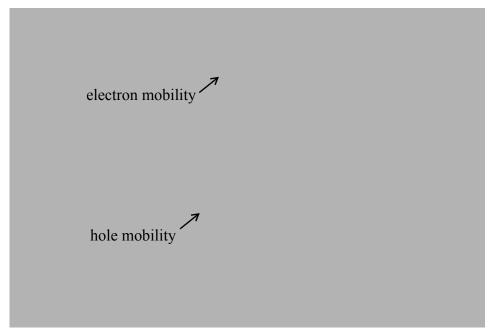
Spring 2000 Prof. King

MIDTERM EXAMINATION #2 April 6, 2000 Time allotted: 80 minutes

NAME:			
(print)	Last	First	Signature
STUDENT ID#:			

- 1. This is a **CLOSED BOOK EXAM**. However, you may use 2 pages of notes and a calculator.
- 2. Show your work on this exam. MAKE YOUR METHODS CLEAR TO THE GRADER.
- 3. Write your answers clearly in the spaces (lines, boxes or plots) provided. Numerical answers must be accurate to within 10% unless otherwise noted.
- 4. Remember to specify the units on answers whenever appropriate.
- 5. Do not unstaple the pages of this exam.

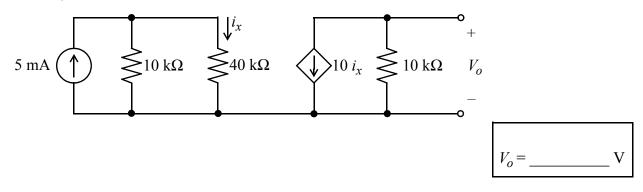



Physical Constants

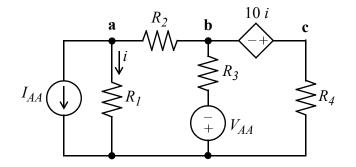
Description	<u>Symbol</u>	Value
Electronic charge	q	1.602 x 10 ⁻¹⁹ C
Permittivity of vacuum	ε _o	$8.854 \times 10^{-14} \text{ F/cm}$
Boltzmann's constant	k	8.62 x 10 ⁻⁵ eV/K
Thermal voltage at 300K	kT/q	0.026 V

Properties of Silicon at 300K

Description	<u>Symbol</u>	Value
Thermal velocity	$v_{ m th}$	$10^7 {\rm cm/s}$
Relative permittivity	ε _r	11.7
Intrinsic carrier density	n _i	$1.45 \text{ x } 10^{10} \text{ cm}^{-3}$


Conversion Factors

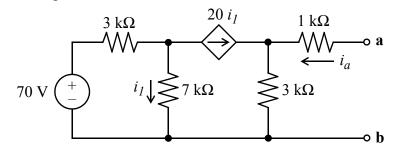
1 eV = $1.602 \times 10^{-19} \text{ J}$ 1 μ m = $10^{-4} \text{ cm} = 10^{-6} \text{ m}$


Farad = Coulomb / Volt Henry = Volt / (Ampere/second) Watt = Volt x Ampere Joule = Watt x second

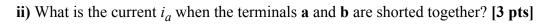
Problem 1 Circuits with Dependent Sources [20 points]

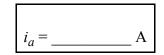
a) Find V_o . [4 pts]

b) In the circuit below, the independent source values and resistances are known.
Use the nodal analysis technique to write 3 equations sufficient to solve for V_a, V_b, and V_c. To receive credit, you must write your answer in the box below. [6 pts]
DO NOT SOLVE THE EQUATIONS!

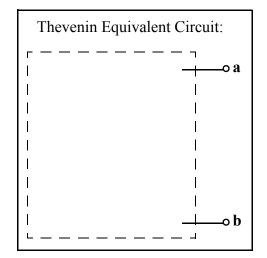


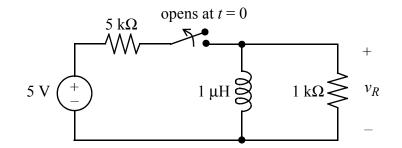
Write the nodal equations here:


V


<u>Problem 1</u> (continued)

c) Consider the following circuit:

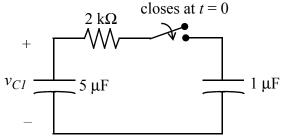

i) Find the voltage V_{ab}. [5 pts]

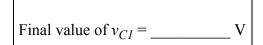

 $V_{ab} =$

iii) Draw the Thevenin Equivalent Circuit. [2 pts]

Problem 2: Transient Response [30 points]

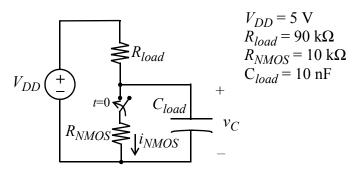
a) In the circuit below, the switch has been in the closed position for a long time.


i) Find the value of v_R just after the switch opens ($t = 0^+$). [3 pts]



ii) How much energy is dissipated in the 1 k Ω resistor after the switch is opened? [2 pts]

Energy dissipated = _____ J

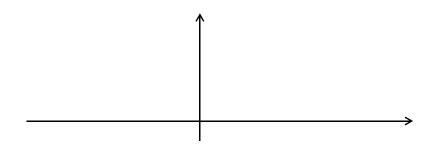

b) In the circuit below, the 5 μ F capacitor is initially charged to 5 V ($v_{CI}(0^{-}) = 5$ V). (The 1 μ F capacitor is initially uncharged.) The switch is then closed at time t = 0. What is the final value of v_{CI} ? [5 pts]

Problem 2 (continued)

c) The following is a circuit model for an NMOS inverter, in which the transistor is turned on at time t = 0:

i) What is the value of v_C at $t = 0^{-?}$ [3 pts]

$$v_C(0^-) = ____V$$

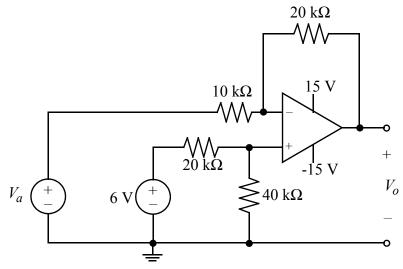

А

- ii) What is the value of i_{NMOS} at $t = 0^+$? [3 pts]
- iii) What is the final value of v_C ? [3 pts]

final value of $v_C =$	V
------------------------	---

 $i_{NMOS}(0^+) =$

iv) Neatly sketch the graph of *i_{NMOS}* for all *t*, labelling the axes. [5 pts]


v) Write an equation for i_{NMOS} as a function of time, for t > 0. [6 pts]

Equation for i_{NMOS} :	 	

Problem 3: Op-Amp Circuits [25 points]

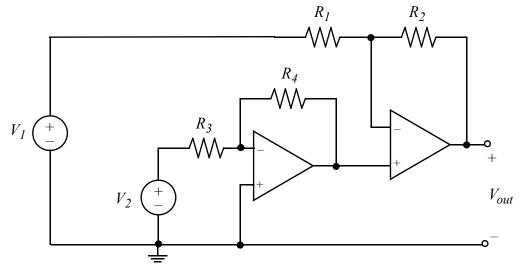
Assume the op-amps in this problem are ideal.

a) Consider the following circuit:

i) Find an expression for V_o as a function of V_a . [6 pts]

Expression for V_o:

ii) Find V_o for $V_a = 2$ V. [3 pts]

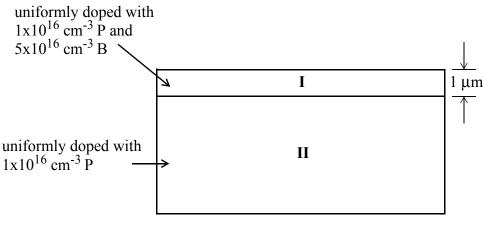

 $V_o =$ _____V

iii) For what values of V_a will the op-amp be saturated? [6 pts]

Values of V_a for which the op-amp will be saturated:

<u>Problem 3</u> (continued)

b) In the following circuit, the op-amps are operating linearly.



Find V_{out} in terms of V_1 , V_2 , R_1 , R_2 , R_3 , R_4 . [10 pts] (<u>Hint</u>: The superposition method might be helpful here.)

 $V_{out} =$

Problem 4: Semiconductor properties; p-n diodes [25 points]

a) Consider a silicon sample maintained at 300K under equilibrium conditions, uniformly doped with 1×10^{16} cm⁻³ phosphorus atoms. The surface region of the sample is **additionally** doped uniformly with 5×10^{16} cm⁻³ boron atoms, to a depth of 1 µm, as shown in the figure below.

Schematic cross-sectional view of silicon sample

- i) In the figure above, indicate the type of the regions (I and II) by labelling them as "n" or "p" type. [2 pts]
- ii) What are the electron and hole concentrations in Region I? [5 pts]

<i>n</i> =	cm ⁻³
<i>p</i> =	cm ⁻³

iii) What is the sheet resistance of Region I? [5 pts]

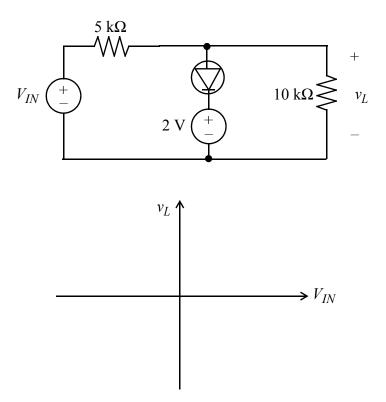
$R_s = $	Ω/square

iv) Suppose any voltage between 0 V and 5 V can be applied to Region I. What fixed voltage ("bias") would you apply to Region II, to guarantee that no current would ever flow between Region I and Region II? Briefly explain your answer. [3 pts]

Region II bias voltage = _____

V

<u>Problem 4</u> (continued)


b) If a diode is operated only within a small range of forward-bias voltages, its behavior can be accurately modelled by a resistor, whose value is dependent on the bias voltage. Derive an expression for the diode "small-signal" resistance:

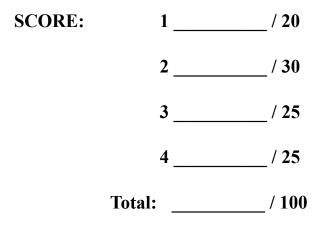
$$R_{diode} = \left(\frac{\partial I}{\partial V}\right)^{-1}$$

in terms of the saturation current I_s , the bias voltage V, and the absolute temperature T. [5 pts]

c) Plot v_L vs. V_{IN} for -10 V < V_{IN} < 10 V on the axes provided, for the circuit below. Note that the diode is a perfect rectifier. Label the axes. [5 pts]

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 40

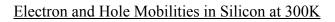

Introduction to Microelectronic Devices

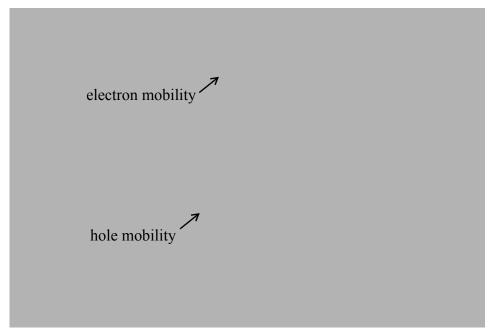
Spring 2000 Prof. King

MIDTERM EXAMINATION #2 April 6, 2000 Time allotted: 80 minutes

NAME:			
(print)	Last	First	Signature
STUDENT ID#:			

- 1. This is a **CLOSED BOOK EXAM**. However, you may use 2 pages of notes and a calculator.
- 2. Show your work on this exam. MAKE YOUR METHODS CLEAR TO THE GRADER.
- 3. Write your answers clearly in the spaces (lines, boxes or plots) provided. Numerical answers must be accurate to within 10% unless otherwise noted.
- 4. Remember to specify the units on answers whenever appropriate.
- 5. Do not unstaple the pages of this exam.

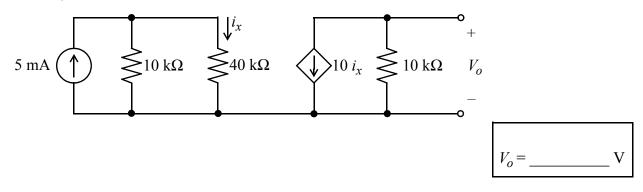



Physical Constants

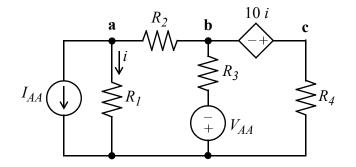
Description	<u>Symbol</u>	Value
Electronic charge	q	1.602 x 10 ⁻¹⁹ C
Permittivity of vacuum	ε _o	$8.854 \times 10^{-14} \text{ F/cm}$
Boltzmann's constant	k	8.62 x 10 ⁻⁵ eV/K
Thermal voltage at 300K	kT/q	0.026 V

Properties of Silicon at 300K

Description	<u>Symbol</u>	Value
Thermal velocity	$v_{ m th}$	$10^7 {\rm cm/s}$
Relative permittivity	ε _r	11.7
Intrinsic carrier density	n _i	$1.45 \text{ x } 10^{10} \text{ cm}^{-3}$


Conversion Factors

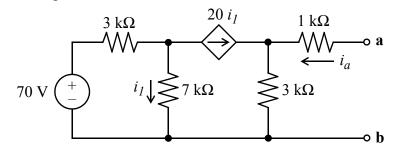
1 eV = $1.602 \times 10^{-19} \text{ J}$ 1 μ m = $10^{-4} \text{ cm} = 10^{-6} \text{ m}$


Farad = Coulomb / Volt Henry = Volt / (Ampere/second) Watt = Volt x Ampere Joule = Watt x second

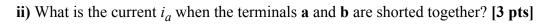
Problem 1 Circuits with Dependent Sources [20 points]

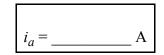
a) Find V_o . [4 pts]

b) In the circuit below, the independent source values and resistances are known.
Use the nodal analysis technique to write 3 equations sufficient to solve for V_a, V_b, and V_c. To receive credit, you must write your answer in the box below. [6 pts]
DO NOT SOLVE THE EQUATIONS!

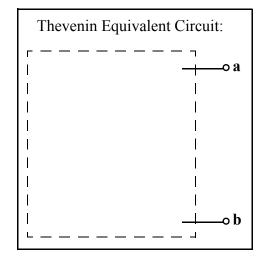


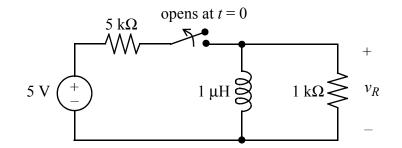
Write the nodal equations here:


V


<u>Problem 1</u> (continued)

c) Consider the following circuit:

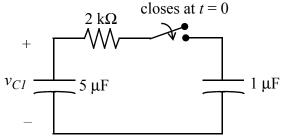

i) Find the voltage V_{ab}. [5 pts]

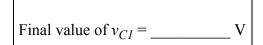

 $V_{ab} =$

iii) Draw the Thevenin Equivalent Circuit. [2 pts]

Problem 2: Transient Response [30 points]

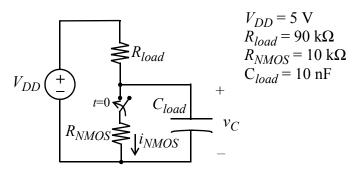
a) In the circuit below, the switch has been in the closed position for a long time.


i) Find the value of v_R just after the switch opens ($t = 0^+$). [3 pts]



ii) How much energy is dissipated in the 1 k Ω resistor after the switch is opened? [2 pts]

Energy dissipated = _____ J

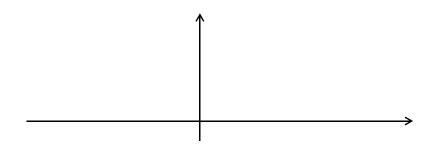

b) In the circuit below, the 5 μ F capacitor is initially charged to 5 V ($v_{CI}(0^{-}) = 5$ V). (The 1 μ F capacitor is initially uncharged.) The switch is then closed at time t = 0. What is the final value of v_{CI} ? [5 pts]

Problem 2 (continued)

c) The following is a circuit model for an NMOS inverter, in which the transistor is turned on at time t = 0:

i) What is the value of v_C at $t = 0^{-?}$ [3 pts]

$$v_C(0^-) = ____V$$

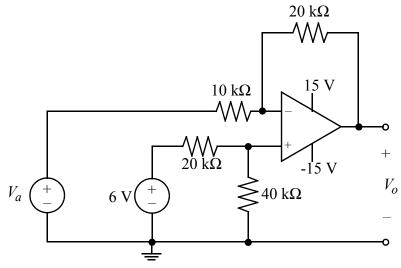

А

- ii) What is the value of i_{NMOS} at $t = 0^+$? [3 pts]
- iii) What is the final value of v_C ? [3 pts]

final value of $v_C =$	V
------------------------	---

 $i_{NMOS}(0^+) =$

iv) Neatly sketch the graph of *i_{NMOS}* for all *t*, labelling the axes. [5 pts]


v) Write an equation for i_{NMOS} as a function of time, for t > 0. [6 pts]

Equation for i_{NMOS} :	 	

Problem 3: Op-Amp Circuits [25 points]

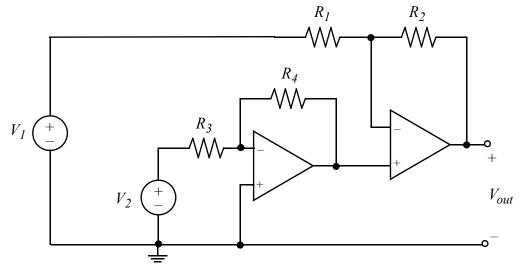
Assume the op-amps in this problem are ideal.

a) Consider the following circuit:

i) Find an expression for V_o as a function of V_a . [6 pts]

Expression for V_o:

ii) Find V_o for $V_a = 2$ V. [3 pts]

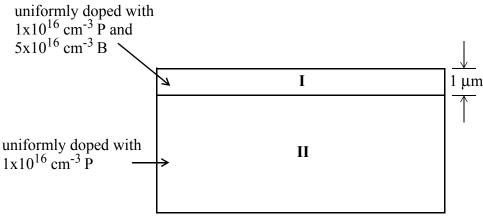

 $V_o =$ _____V

iii) For what values of V_a will the op-amp be saturated? [6 pts]

Values of V_a for which the op-amp will be saturated:

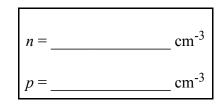
<u>Problem 3</u> (continued)

b) In the following circuit, the op-amps are operating linearly.



Find V_{out} in terms of V_1 , V_2 , R_1 , R_2 , R_3 , R_4 . [10 pts] (<u>Hint</u>: The superposition method might be helpful here.)

 $V_{out} =$


Problem 4: Semiconductor properties; p-n diodes [25 points]

a) Consider a silicon sample maintained at 300K under equilibrium conditions, uniformly doped with 1×10^{16} cm⁻³ phosphorus atoms. The surface region of the sample is **additionally** doped uniformly with 5×10^{16} cm⁻³ boron atoms, to a depth of 1 µm, as shown in the figure below.

Schematic cross-sectional view of silicon sample

- i) In the figure above, indicate the type of the regions (I and II) by labelling them as "n" or "p" type. [2 pts]
- ii) What are the electron and hole concentrations in Region I? [5 pts]

iii) What is the sheet resistance of Region I? [5 pts]

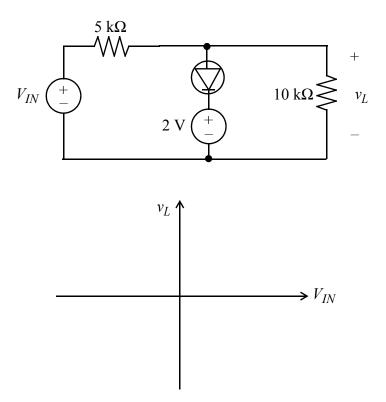
$R_s = $	Ω/square

iv) Suppose any voltage between 0 V and 5 V can be applied to Region I. What fixed voltage ("bias") would you apply to Region II, to guarantee that no current would ever flow between Region I and Region II? Briefly explain your answer. [3 pts]

Region II bias voltage = _____

V

<u>Problem 4</u> (continued)


b) If a diode is operated only within a small range of forward-bias voltages, its behavior can be accurately modelled by a resistor, whose value is dependent on the bias voltage. Derive an expression for the diode "small-signal" resistance:

$$R_{diode} = \left(\frac{\partial I}{\partial V}\right)^{-1}$$

in terms of the saturation current I_s , the bias voltage V, and the absolute temperature T. [5 pts]

c) Plot v_L vs. V_{IN} for -10 V < V_{IN} < 10 V on the axes provided, for the circuit below. Note that the diode is a perfect rectifier. Label the axes. [5 pts]

