Spring 2004

Midterm Exam # 2 April 15, 2004 Time Allowed: 80 minutes

Name:_____, _____ Last First

Student ID #:_____, Signature:_____

Discussion Section:_____

This is a closed-book exam, except for use of two 8.5 x 11 inch sheets of your notes. Show all your work to receive full or partial credit. Write your answers clearly in the spaces provided.

Problem #:	Points:
1	/10
2	/20
3	/20
Total	/50

1.

a) (5 points)

A silicon sample is uniformly doped with Boron to a concentration of $10^{16} a toms/cm^3$. Determine the resistivity of the sample at room temperature.

2

Use electron mobility = $\mu_n = 1000 \text{ cm}^2/\text{v-s}$, hole mobility = $\mu_p = 400 \text{ cm}^2/\text{v-s}$, $q = 1.6 \cdot 10^{-19} \text{ C}$ and $n_i = 10^{10}$ at room temperature.

b) (5 points)

The same sample is then to be counter doped to a depth of $5\mu m$ with Arsenic atoms to create a resistor technology with resistance of $100\Omega/\Box$.

Determine the required Arsenic doping density.

a) (10 points)

The diode in Figure 2(a) is ideal. The waveform $V_S(t)$ is a balanced square wave with amplitude of 10 V and period of 1mS. Take $L = 50\mu H$ and $R = 1\Omega$.

The circuit operates in a periodic steady state. Sketch and carefully dimension one period of the $i_L(t)$ waveform on the axes below. Make reasonable approximations.

3

b) (10 points)

In the circuit of Figure 2(b), switch S_1 is initially closed and the circuit is in equilibrium. Switch S_1 is then opened and switch S_2 is closed for a sufficiently long time so that the circuit can be considered to be in equilibrium. How much energy is dissipated in the $1k\Omega$ resistor during the transient?

Hint: Think in terms of net charge and energy flow. Detailed transient analysis is **NOT** needed.

Figure 3

a) (5 points)

3.

 V_{G}

Determine the requires bias voltage V_G so that M1 is biased in saturation with $V_{DS} = 2V$. Take $v_S = 0$ for this calculation.

 $V_T = 0.5V$

 $\frac{W}{L} = 2$

 $\dot{k} = 100 \mu A / V^2$

b) (10 points)

Draw the small signal model for this circuit. Compute the parameters of this small signal model.

c) (5 points)

Determine the small signal gain $A_{\upsilon} = \frac{\upsilon_0}{\upsilon_S}$.