UNIVERSITY OF CALIFORNIA AT BERKELEY EECS Department

EECS 40, Summer 2005 Instructor: Octavian Florescu Homework #5

Due Wed. 7/27 at 5PM in 2nd Floor Cory Dropbox Total Points:

Note: Be sure to put (1) your name and (2) discussion section number on your homework. You will get the graded homework back in your discussion session.

Operational Amplifiers

- **1.** Problem 14.11 in the textbook
- 2. Problem 14.27 in the textbook

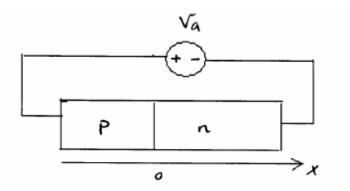
Semiconductor Devices

- 3. A silicon region is doped with acceptors at $N_a = 10^{15} cm^{-3}$ and with donors at
 - $N_d = 8 \times 10^{14} cm^{-3}$.
 - **a.** What type is the silicon? (n-type or p-type)
 - **b.** What electric field must be applied for the magnitude of the drift velocity of the majority carriers to be $4 \times 10^6 cm/s$?

4.

a. A region of silicon is doped with three impurities. arsenic: $10^{16} cm^{-3}$, boron : $1.15 \times 10^{16} cm^{-3}$ and phosphorus: $2.5 \times 10^{15} cm^{-3}$. Find the electron and hole concentration at the room temperature.

b. Given a sheet resistance of 250Ω / square in a $11 \mu m$ thick p-type implanted layer:


i. What is the average acceptor concentration in the layer?

ii. Sketch the layout for a 2.5 K $\Omega\,$ resistor.

5. Given an n-type ion implanted layer with thickness $t = 1\mu m$ and average doping concentration $N_d = 10^{17} cm^{-3}$, what is the sheet resistance?

pn Junctions and Diodes:

6. Consider a pn junction under equilibrium, Va = 0, with $N_a = 10^{17} cm^{-3}$ and $N_d = 10^{14} cm^{-3}$.

- a. What is the value of the built–in potential?
- b. What is the depletion width?
- c. Draw the electric field, the electric potential and the charge density plot with respect to x.
- d. Repeat parts a, b and c for Va = -0.5 V and Va = 0.5 volts. Compare your results.
- 7. Problem 10.6 in the textbook
- 8. Problem 10.8 in the textbook
- 9. Problem 10.32 in the textbook
- 10. Problem 10.33 in the textbook
- 11. Problem 10.35 in the textbook

MOSFET:

- 12. Problem 12.3 in the text book
- 13. Problem 12.5 in the text book
- 14. Problem 12.9 in the text book
- 15. Problem 12.13 in the text book
- 16. Problem 12.17 in the textbook