Announcements

- Sections begin this week
\square Cancelled Sections: Th 12-2.
■ Labs begin this week. Attend your only second lab slot this week.

Cancelled labs: ThF 8-11, 2-5. Please check your Lab section.

- Homework \#1 online

Due next Monday at 4pm

Announcements

- Office Hours

Tu,Th 11-12 in Cory 382
Or just e-mail me at florescu@eecs

- TA Office Hours

TBD

Review

Find $v_{\mathrm{ab}}, v_{\mathrm{ca}}, v_{\mathrm{cb}}$

Note that the labeling convention has nothing to do with whether or not v is positive or negative.

Lecture \#2

OUTLINE

- Circuit Elements
- Circuit element $I-V$ characteristics
- Construction of a circuit model
- Kirchhoff's laws - a closer look

Reading

(Chapter 1, begin Ch. 2)

Circuit Elements

- 5 ideal basic circuit elements:
\square voltage source
\square current source
\square resistorinductor

\}active elements, capable of generating electric energy $\} \begin{aligned} & \text { passive elements, incapable of } \\ & \text { generating electric energy }\end{aligned}$
\square capacitor

- Many practical systems can be modeled with just sources and resistors
- The basic analytical techniques for solving circuits with inductors and capacitors are similar to those for resistive circuits

Electrical Sources

- An electrical source is a device that is capable of converting non-electric energy to electric energy and vice versa.

Examples:
battery: chemical \longleftrightarrow electric
\square dynamo (generator/motor): mechanical \longrightarrow electric (Ex. gasoline-powered generator, Bonneville dam)
\rightarrow Electrical sources can either deliver or absorb power

Ideal Voltage Source

- Circuit element that maintains a prescribed voltage across its terminals, regardless of the current flowing in those terminals.
\square Voltage is known, but current is determined by the circuit to which the source is connected.
- The voltage can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying. Device symbols:

Ideal Current Source

- Circuit element that maintains a prescribed current through its terminals, regardless of the voltage across those terminals.
\square Current is known, but voltage is determined by the circuit to which the source is connected.
- The current can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying.

Device symbols:

Electrical Resistance

- Resistance: the ratio of voltage drop and current. The circuit element used to model this behavior is the resistor.

Circuit symbol:

Units: Volts per Ampere \equiv ohms (Ω)

- The current flowing in the resistor is proportional to the voltage across the resistor:
$\boldsymbol{v}=\boldsymbol{i} \boldsymbol{R}$ (Ohm's Law)

Georg Simon Ohm
1789-1854
where $\boldsymbol{v}=$ voltage $(\mathrm{V}), \boldsymbol{i}=$ current (A), and $\boldsymbol{R}=\operatorname{resistance}(\Omega)$

Electrical Conductance

- Conductance is the reciprocal of resistance.

Symbol: G

Units: siemens (S) or mhos (\mho)

Example:
Consider an 8Ω resistor. What is its conductance?

Werner von Siemens

Short Circuit and Open Circuit

- Short circuit
$\square \mathrm{R}=0 \rightarrow$ no voltage difference exists
\square all points on the wire are at the same potential.
\square Current can flow, as determined by the circuit
- Open circuit
$\square \mathrm{R}=\infty \quad \rightarrow$ no current flows
\square Voltage difference can exist, as determined by the circuit

Circuit Nodes and Loops

- A node is a point where two or more circuit elements are connected.
- A loop is formed by tracing a closed path in a circuit through selected basic circuit elements without passing through any intermediate node more than once

Kirchhoff's Laws

- Kirchhoff's Current Law (KCL):

The algebraic sum of all the currents entering any node in a circuit equals zero.

- Kirchhoff's Voltage Law (KVL):

The algebraic sum of all the voltages around any loop in a circuit equals zero.

Example: Power Absorbed by a Resistor

$$
\begin{gathered}
p=v i=(i R) i=i^{2} R \\
p=v i=v(v / R)=v^{2} / R
\end{gathered}
$$

Note that $p>0$ always, for a resistor \rightarrow a resistor dissipates electric energy

Example:
a) Calculate the voltage v_{g} and current i_{a}.
b) Determine the power dissipated in the 80Ω resistor.

More Examples

Are these interconnections permissible?

This circuit connection is NOT permissible. It violates the KCL.

This circuit connection is permissible. This is because the current sources can sustain any voltage across; Hence this is permissible.

Current vs. Voltage (I-V)

 Characteristic■ Voltage sources, current sources, and resistors can be described by plotting the current (i) as a function of the voltage (v)

Passive? Active?

I-V Characteristic of an Ideal Voltage Source

1. Plot the I-V characteristic for $v_{s}>0$. For what values of i does the source absorb power? For what values of i does the source release power?
$\mathrm{V}_{\mathrm{s}}>0 \rightarrow \mathrm{i}<0$ release power; i>0 absorb power What is the I-V characteristic for an ideal wire?

I-V Characteristic of an Ideal Voltage Source

2. Plot the I-V characteristic for $v_{s}<0$. For what values of i does the source absorb power? For what values of i does the source release power? $\mathrm{V}_{\mathrm{s}}<0 \rightarrow \mathrm{i}>0$ release power; $\mathrm{i}<0$ absorb power

I-V Characteristic of an Ideal Current Source

1. Plot the I-V characteristic for $i_{s}>0$. For what values of v does the source absorb power? For what values of v does the source release power?
$\mathrm{V}>0$ absorb power; $\mathrm{V}<0$ release power

Short Circuit and Open Circuit

Wire ("short circuit"):

- $R=0 \rightarrow$ no voltage difference exists
(all points on the wire are at the same potential)
- Current can flow, as determined by the circuit

Air ("open circuit"):
■ $R=\infty \rightarrow$ no current flows

- Voltage difference can exist, as determined by the circuit

Figure 2.10 Circuit symbols. (a) Short circuit. (b) Open circuit. (c) Switch

I-V Characteristic of Ideal Resistor

1. Plot the I-V characteristic for $R=1 \mathrm{k} \Omega$. What is the slope?

"Lumped Element" Circuit Modeling

(Model = representation of a real system which simplifies analysis)

- In circuit analysis, important characteristics are grouped together in "lumps" (separate circuit elements) connected by perfect conductors ("wires")
- An electrical system can be modeled by an electric circuit (combination of paths, each containing 1 or more circuit elements).

Construction of a Circuit Model

- The electrical behavior of each physical component is of primary interest.
- We need to account for undesired as well as desired electrical effects.
- Simplifying assumptions should be made wherever reasonable.

I-V Characteristic of a real Voltage Source

1. What is the $I-V$ characteristic for an real current source?
2. What is the I-V characteristic for an ideal wire?

Terminology: Nodes and Branches

Node: A point where two or more circuit elements are connected

Branch: A path that connects two nodes

Notation: Node and Branch Voltages

- Use one node as the reference (the "common" or "ground" node) - label it with a symbol
- The voltage drop from node \mathbf{x} to the reference node is called the node voltage \mathbf{v}_{x}.
- The voltage across a circuit element is defined as the difference between the node voltages at its terminals

$$
-v_{1}+
$$

Example:

Using Kirchhoff's Current Law (KCL)

Consider a node connecting several branches:

■ Use reference directions to determine whether currents are "entering" or "leaving" the node with no concern about actual current directions

Formulations of Kirchhoff's Current

Law (Charge stored in node is zero.)

Formulation 1:

Sum of currents entering node
= sum of currents leaving node

Formulation 2:

Algebraic sum of currents entering node $=0$

- Currents leaving are included with a minus sign.

Formulation 3:

Algebraic sum of currents leaving node $=0$

- Currents entering are included with a minus sign.

A Major Implication of KCL

- KCL tells us that all of the elements in a single branch carry the same current.
- We say these elements are connected in series.

Current entering node = Current leaving node

$$
i_{1}=i_{2}
$$

KCL Example

Currents entering the node:

Currents leaving the node:

3 formulations of KCL:
1.
2.
3.

Generalization of KCL

- The sum of currents entering/leaving a closed surface is zero. Circuit branches can be inside this surface, i.e. the surface can enclose more than one node!

This could be a big chunk of a circuit, e.g. a "black box"

Generalized KCL Examples

Using Kirchhoff's Voltage Law (KVL)

Consider a branch which forms part of a loop:

Moving from + to We add V_{1}

Moving from - to + We subtract V_{1}

- Use reference polarities to determine whether a voltage is dropped
- No concern about actual voltage polarities

Formulations of Kirchhoff's Voltage

Law (Conservation of energy)

Formulation 1:

Sum of voltage drops around loop
= sum of voltage rises around loop

Formulation 2:

Algebraic sum of voltage drops around loop $=0$

- Voltage rises are included with a minus sign.
(Handy trick: Look at the first sign you encounter on each element when tracing the loop.)

Formulation 3:

Algebraic sum of voltage rises around loop $=0$

- Voltage drops are included with a minus sign.

A Major Implication of KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

Applying KVL in the clockwise direction, starting at the top:

$$
v_{b}-v_{a}=0 \quad \rightarrow \quad v_{b}=v_{a}
$$

KVL Example
Three closed paths:

Path 1:

Path 2:

Path 3:

An Underlying Assumption of KVL

- No time-varying magnetic flux through the loop

Otherwise, there would be an induced voltage (Faraday's Law)

- Note: Antennas are designed to "pick up" electromagnetic waves; "regular circuits" often do so undesirably.

Avoid these loops!

How do we deal with antennas (EECS 117A)?
Include a voltage source as the circuit representation of the induced voltage or "noise".
(Use a lumped model rather than a distributed (wave) model.)

Resistors in Series

Consider a circuit with multiple resistors connected in series.
Find their "equivalent resistance".

- KCL tells us that the same current (I) flows through every resistor
- KVL tells us

Equivalent resistance of resistors in series is the sum

Voltage Divider

$I=V_{\mathrm{SS}} /\left(R_{1}+R_{2}+R_{3}+R_{4}\right)$

When can the Voltage Divider Formula be Used?

Correct, if nothing else is connected to nodes

Why? What is V_{2} ?

Resistors in Parallel

Consider a circuit with two resistors connected in parallel. Find their "equivalent resistance".

- KVL tells us that the same voltage is dropped across each resistor $V_{x}=I_{1} \boldsymbol{R}_{1}=I_{2} \boldsymbol{R}_{\mathbf{2}}$
- KCL tells us

General Formula for Parallel Resistors

What single resistance $R_{\text {eq }}$ is equivalent to three resistors in parallel?

Equivalent conductance of resistors in parallel is the sum

Current Divider

Generalized Current Divider Formula

Consider a current divider circuit with >2 resistors in parallel:

$$
\mathrm{V}=\frac{\mathrm{I}}{\left(\frac{1}{\mathrm{R}_{1}}\right)+\left(\frac{1}{\mathrm{R}_{2}}\right)+\left(\frac{1}{\mathrm{R}_{3}}\right)}
$$

$$
I_{3}=\frac{V}{R_{3}}=I\left[\frac{1 / R_{3}}{1 / R_{1}+1 / R_{2}+1 / R_{3}}\right]
$$

Summary

- An ideal voltage source maintains a prescribed voltage regardless of the current in the device.
- An ideal current source maintains a prescribed current regardless of the voltage across the device.
- A resistor constrains its voltage and current to be proportional to each other:

$$
v=i R \quad \text { (Ohm's law) }
$$

Summary (cont'd)

- Kirchhoff's current law (KCL) states that the algebraic sum of all currents at any node in a circuit equals zero.
- Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around any closed path in a circuit equals zero.
- Resistors in Series - Voltage Divider
- Conductances in Parallel - Current Divider

