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Announcements

HW #1 Due today at 6pm.
HW #2 posted online today and due next 
Tuesday at 6pm.
Due to scheduling conflicts with some 
students, classes will resume normally this 
week and next.
Midterm tentatively 7/12.
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Review
Mesh and Nodal Analysis
Superposition
Equivalent Circuits

Thevenin
Norton

Measuring Voltages and Currents
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Review: Thevenin Equivalent Example
Find the Thevenin equivalent with respect to the terminals a,b:
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Lecture #4

OUTLINE

The capacitor
The inductor
1st Order Circuits
Transient and Steady-State response

Reading
Chapter 3, Chap 4.1-4.5
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The Capacitor
Two conductors (a,b) separated by an insulator:

difference in potential = Vab
=> equal & opposite charge Q on conductors

Q = CVab

where C is the capacitance of the structure, 
positive (+) charge is on the conductor at higher potential

Parallel-plate capacitor:
• area of the plates = A (m2)
• separation between plates = d (m)
• dielectric permittivity of insulator = ε
(F/m)
=> capacitance

d
AC ε

=

(stored charge in terms of voltage)

F(F)
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Symbol:

Units:  Farads (Coulombs/Volt)

Current-Voltage relationship:

or

Note: Q  (vc) must be a continuous function of time

Capacitor

+
vc
–

ic

dt
dCv

dt
dvC

dt
dQi c

c
c +==

C C

(typical range of values: 1 pF to 1 μF; for “supercapa-
citors” up to a few F!)

+

Electrolytic (polarized)
capacitor

C

If C (geometry) is unchanging, iC = C dvC/dt
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Voltage in Terms of Current
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Uses:  Capacitors are used to store energy for camera flashbulbs,
in filters that separate various frequency signals, and
they appear as undesired “parasitic” elements in circuits where
they usually degrade circuit performance
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You might think the energy stored on a capacitor is QV = 
CV2, which has the dimension of Joules.  But during 
charging, the average voltage across the capacitor was 
only half the final value of V for a linear capacitor.

Thus, energy is .2
2
1       

2
1 CVQV =

Example: A 1 pF capacitance charged to 5 Volts 
has  ½(5V)2 (1pF) = 12.5 pJ
(A 5F supercapacitor charged to 5
volts stores 63 J; if it discharged at a
constant rate in 1 ms energy is
discharged at a 63 kW rate!)

Stored Energy
CAPACITORS STORE ELECTRIC ENERGY
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A more rigorous derivation
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Example: Current, Power & Energy for a Capacitor

dt
dvCi =

–
+

v(t) 10 μF

i(t)

t (μs)

v (V)

0 2 3 4 51

t (μs)0 2 3 4 51

1

i (μA) vc and q must be continuous
functions of time; however,
ic can be discontinuous.

)0()(1)(
0

vdi
C

tv
t

+= ∫ ττ

Note: In “steady state”
(dc operation), time
derivatives are zero

C is an open circuit
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vip =

0 2 3 4 51

w (J)

–
+

v(t) 10 μF

i(t)

t (μs)0 2 3 4 51

p (W)

t (μs)

2

0 2
1 Cvpdw

t

∫ == τ

Example: Current, Power & Energy for a Capacitor
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Capacitors in Series

i(t)
C1

+   v1(t)  –

i(t)

+

v(t)=v1(t)+v2(t)

–
Ceq

C2

+   v2(t)  –

21

111
CCCeq

+=

Proof:
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Capacitors in Parallel

+
v(t)
_

C1

i(t)=i1(t)+i2(t)

Ceq
C2

+
v(t)
_

i1(t) i2(t)

Ceq = C1+C2

Proof:
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A capacitor can be constructed by interleaving the plates 
with two dielectric layers and rolling them up, to achieve 
a compact size.

To achieve a small volume, a very thin dielectric with a 
high dielectric constant is desirable.  However, dielectric 
materials break down and become conductors when the 
electric field (units: V/cm) is too high.

Real capacitors have maximum voltage ratings
An engineering trade-off exists between compact size and 
high voltage rating

Practical Capacitors
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Symbol:

Units:  Henrys (Volts • second / Ampere)

Current in terms of voltage:

Note: iL must be a continuous function of time

Inductor

+
vL
–

iL

∫ +=
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(typical range of values: μH to 10 H)
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Stored Energy

Consider an inductor having an initial current i(t0) = i0
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INDUCTORS STORE MAGNETIC ENERGY
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Inductors in Series

i(t)
L1

+   v1(t)  –

i(t)

+

v(t)=v1(t)+v2(t)

–
Leq

L2

+   v2(t)  –

Leq = L1+L2
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Inductors in Parallel

+
v(t)
_

L1

i(t)=i1(t)+i2(t)

Leq
L2

+
v(t)
_

i1(t) i2(t)

21

111
LLL eq

+=
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First-Order Circuits
A circuit that contains only sources, resistors and an 
inductor is called an RL circuit.
A circuit that contains only sources, resistors and a 
capacitor is called an RC circuit.
RL and RC circuits are called first-order circuits because 
their voltages and currents are described by first-order 
differential equations.

–
+

vs L

R

–
+

vs C

R

i i
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Transient vs. Steady-State Response

The momentary behavior of a circuit (in response 
to a change in stimulation) is referred to as its 
transient response.

The behavior of a circuit a long time (many time 
constants) after the change in voltage or current is 
called the steady-state response.
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Review (Conceptual)
Any* first-order circuit can be reduced to a 
Thévenin (or Norton) equivalent connected to 
either a single equivalent inductor or capacitor.

In steady state, an inductor behaves like a short circuit
In steady state, a capacitor behaves like an open circuit

–
+

VTh C

RTh

LRThITh
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Response

The natural response of an RL or RC circuit is its 
behavior (i.e., current and voltage) when stored 
energy in the inductor or capacitor is released to 
the resistive part of the network (containing no 
independent sources).

The step response of an RL or RC circuit is its 
behavior when a voltage or current source step is 
applied to the circuit, or immediately after a switch 
state is  changed.
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Natural Response of an RL Circuit
Consider the following circuit, for which the switch is 
closed for t < 0, and then opened at t = 0:

Notation:
0– is used to denote the time just prior to switching
0+  is used to denote the time immediately after switching

t<0 the entire system is at steady-state; and the inductor 
is like short circuit
The current flowing in the inductor at t = 0– is Io and V 
across is 0.

LRo RIo

t = 0 i +

v

–
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Solving for the Current (t ≥ 0)
For t > 0, the circuit reduces to

Applying KVL to the LR circuit:
v(t)=i(t)R
At t=0+, i=I0, 
At arbitrary t>0, i=i(t) and

Solution:

( )( ) di tv t L
dt

=

LRo RIo

i +

v

–

= I0e-(R/L)ttLReiti )/()0()( −=
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Solving for the Voltage (t > 0)

Note that the voltage changes abruptly:

tLR
oeIti )/()( −=

LRo RIo

+

v

–

I0Rv

ReIiRtvt
v

tLR
o

=⇒

==>

=

+

−

−

)0(

)(0,for 
0)0(

)/(
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Solving for Power and Energy Delivered 
(t > 0) tLR
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Consider the following circuit, for which the switch is 
closed for t < 0, and then opened at t = 0:

Notation:
0– is used to denote the time just prior to switching
0+  is used to denote the time immediately after switching

The voltage on the capacitor at t = 0– is Vo

Natural Response of an RC Circuit

C

Ro

RVo

t = 0
+
−

+
v
–
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Solving for the Voltage (t ≥ 0)
For t > 0, the circuit reduces to

Applying KCL to the RC circuit:

Solution:
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Solving for the Current (t > 0)

Note that the current changes abruptly:
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Solving for Power and Energy Delivered 
(t > 0)
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Natural Response Summary
RL Circuit

Inductor current cannot 
change instantaneously

time constant

RC Circuit

Capacitor voltage cannot 
change instantaneously

time constantR
L

=τ

τ/)0()(
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=
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Procedure for Finding Transient Response
1. Identify the variable of interest

• For RL circuits, it is usually the inductor current iL(t)
• For RC circuits, it is usually the capacitor voltage vc(t)

2. Determine the initial value (at t = t0
+) of the 

variable
• Recall that iL(t) and vc(t) are continuous variables:

iL(t0
+) = iL(t0

−) and   vc(t0
+) = vc(t0

−)

• Assuming that the circuit reached steady state before 
t0 , use the fact that an inductor behaves like a short 
circuit in steady state or that a capacitor behaves like 
an open circuit in steady state
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Procedure (cont’d)
3. Calculate the final value of the variable  

(its value as t ∞)
• Again, make use of the fact that an inductor 

behaves like a short circuit in steady state (t ∞)
or that a capacitor behaves like an open circuit in 
steady state (t ∞)

4. Calculate the time constant for the circuit
τ = L/R for an RL circuit, where R is the Thévenin

equivalent resistance “seen” by the inductor
τ = RC for an RC circuit where R is the Thévenin

equivalent resistance “seen” by the capacitor
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Capacitor

v cannot change instantaneously
i can change instantaneously
Do not short-circuit a charged
capacitor (-> infinite current!)

n cap.’s in series:

n cap.’s in parallel:

Inductor

i cannot change instantaneously
v can change instantaneously

Do not open-circuit an inductor with 
current (-> infinite voltage!)

n ind.’s in series:

n ind.’s in parallel:

Summary
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∑
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Summary Cont’d
Steady-state nothing is time varying.
In steady state, an inductor behaves like a short 
circuit
In steady state, a capacitor behaves like an 
open circuit


