Announcements

- Attend only your second lab slot this week and next week.
- HW \#3 online today.

■ Review session next Monday 5-8pm. Location TBD.

- Midterm \#1 next Tuesday 12:00-1:30. Location TBD.

OUTLINE

■ Review and examples
$1^{\text {st }}$ and $2^{\text {nd }}$ Order Circuits
Phasors
\square Complex impedence

Equivalent inductance

Equivalent Capacitance and Voltage Division

$\mathrm{C}_{\mathrm{eq}}=$?
$\mathrm{Z}_{\mathrm{eq}}=$?
$\Delta \mathrm{V}_{\mathrm{o}}=$?

1 $^{\text {st }}$ Order Circuit Example 1

- Find $\mathrm{Vo}(\mathrm{t})$ knowing $\mathrm{i}(\mathrm{t})=\mathrm{u}(\mathrm{t})$, the unity step function.
- Plot the $\mathrm{Vo}(\mathrm{t}), \mathrm{i}(\mathrm{t}), \mathrm{E}_{\text {capacitor }}(\mathrm{t})$

$1^{\text {st }}$ Order Circuit Example 2

- Find $\mathrm{Vo}(\mathrm{t})$ knowing $\mathrm{i}(\mathrm{t})=\mathrm{u}(\mathrm{t}) / 10$, the unity step function
- Plot the $\mathrm{Vo}(\mathrm{t}), \mathrm{i}(\mathrm{t}), \mathrm{E}_{\text {capacitor }}(\mathrm{t})$

$1^{\text {st }}$ Order Circuit Example 3

- Find $\mathrm{Vo}(\mathrm{t})$ knowing $\mathrm{i}(\mathrm{t})=\operatorname{Acos}\left(\omega_{\mathrm{o}} \mathrm{t}\right)+\mathrm{u}(\mathrm{t})$

$2^{\text {nd }}$ Order Circuit Example 1

- Find the damping factor and the natural frequency of this circuit.

$2^{\text {nd }}$ Order Circuit Example 2

Find $\mathrm{Vo}(\mathrm{t})$ knowing $\mathrm{i}(\mathrm{t})=\mathrm{u}(\mathrm{t})$

Phasor Example 1

- Find $\mathrm{Vo}(\mathrm{t})$ knowing $\mathrm{i}(\mathrm{t})=\cos (\omega \mathrm{t})$
- Plot Vo(j ω)/i(j ω)

Phasor Example 2

- Find the total equivalent impedance \mathbf{Z} of the circuit.
- Find $\mathrm{Vo}(\mathrm{j} \omega) / \mathrm{i}(\mathrm{j} \omega)$
- At what frequency is the impedance purely real?

Complex Impedence Example 1

-Find $\mathrm{Vo}(\mathrm{t}) / \mathrm{Vi}(\mathrm{t})$
-Find the usable power transfer ratio $\mathrm{Po} / \mathrm{Pi}$ - Knowing Z_{2}, choose Z_{1} such that $\mathrm{Po} / \mathrm{Pi}$ is max

