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Lecture #13
OUTLINE

MOSFET ID vs. VGS characteristic 
Circuit models for the MOSFET

resistive switch model
small-signal model

Reading
Howe & Sodini: Chapter 8.1, 8.3 

Hambley: Chapter 12.1-12.5
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At high electric fields, the average velocity of carriers is 
NOT proportional to the field; it saturates at ~107 cm/sec 
for both electrons and holes:

Velocity Saturation
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Current Saturation in Modern MOSFETs
In digital ICs, we typically use transistors with the 
shortest possible gate-length for high-speed operation.

In a very short-channel MOSFET, ID saturates because 
the carrier velocity is limited to ~107 cm/sec

v is not proportional to E, 
due to velocity saturation

EE40 Summer 2005: Lecture 13                          Instructor: Octavian Florescu 4

1. ID is lower than that predicted by the mobility model

2. ID increases linearly with VGS − VT rather than 
quadratically in the saturation region

Consequences of Velocity Saturation
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MOSFET VT Measurement
VT can be determined by plotting ID vs. VGS, 
using a low value of VDS :
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Subthreshold Conduction (Leakage Current)
The transition from the ON state to the OFF state 
is gradual.  This can be seen more clearly when 
ID is plotted on a logarithmic scale:

In the subthreshold
(VGS < VT) region,

This is essentially the channel-
source pn junction current.
(Some electrons diffuse from the
source into the channel, if this
pn junction is forward biased.)
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Qualitative Explanation for Subthreshold Leakage
The channel Vc (at the Si surface) is capacitively
coupled to the gate voltage VG:
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Slope Factor (or Subthreshold Swing) S
S is defined to be the inverse slope of the log (ID) 
vs. VGS characteristic in the subthreshold region:

VDS > 0

1/S is the slope
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VT Design Trade-Off
(Important consideration for digital-circuit applications)

Low VT is desirable for high ON current
IDSAT ∝ (VDD - VT)η 1 < η < 2

where VDD is the power-supply voltage

…but high VT is needed for low OFF current
Low VT

High VT

IOFF,high VT

IOFF,low VT

VGS

log IDS

0
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The MOSFET as a Resistive Switch
For digital circuit applications, the MOSFET is 
either OFF (VGS < VT) or ON (VGS = VDD).  Thus, 
we only need to consider two ID vs. VDS curves:

1. the curve for VGS < VT

2. the curve for VGS = VDD

ID

VDS

VGS = VDD  (closed switch)

VGS < VT (open switch)

Req
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Equivalent Resistance Req
In a digital circuit, an n-channel MOSFET in the 
ON state is typically used to discharge a 
capacitor connected to its drain terminal:

gate voltage VG = VDD

source voltage VS = 0 V
drain voltage VD initially at VDD, discharging toward 0 V

The value of Req should be 
set to the value which gives 
the correct propagation 
delay (time required for 
output to fall to ½VDD):
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Typical MOSFET Parameter Values
For a given MOSFET fabrication process 
technology, the following parameters are known:

VT (~0.5 V)
Cox and k′ (<0.001 A/V2)
VDSAT   (≤ 1 V)
λ  (≤ 0.1 V-1)

Example Req values for 0.25 μm technology (W = L):

How can Req be decreased?
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MOSFET Model for Analog Circuits
For analog circuit applications, the MOSFET is 
biased in the saturation region, and the circuit is 
designed to process incremental signals.

A DC operating point is established by the bias voltages VBIAS
and VDD, such that VDS > VGS – VT

Incremental voltages vs and vds that are much smaller in 
magnitude perturb the operating point
The MOSFET small-signal model is a circuit which models the 
change in the drain current (id) in response to these 
perturbations

MOSFET+
–

+
–

RD

VDDVBIAS

vs

G

S S

D

ID + id

+
VDS + vds

−

− +

EE40 Summer 2005: Lecture 13                          Instructor: Octavian Florescu 14

NMOSFET Small-Signal Model
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Notation
Subscript convention (Lecture 2, Slide 11):

VDS ≡ VD – VS , VGS ≡ VG – VS , etc.

Double-subscripts denote DC sources (Lecture 23, Slide 7):
VDD , VCC , ISS , etc.

• To distinguish between DC and AC components of an 
electrical quantity, the following convention is used:
– DC quantity: upper-case letter with upper-case subscript

ID , VDS , etc.
– AC quantity: lower-case letter with lower-case subscript

id , vds , etc.
– Total (DC + AC) quantity: 

lower-case letter with upper-case subscript
iD , vDS , etc.
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P-Channel MOSFET Example
In a digital circuit, a p-channel MOSFET in the 
ON state is typically used to charge a capacitor 
connected to its drain terminal:

gate voltage VG = 0 V
source voltage VS = VDD (power-supply voltage)
drain voltage VD initially at 0 V, charging toward VDD
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Common-Source (CS) Amplifier
The input voltage 
vs causes vGS to 
vary with time, 
which in turn 
causes iD to vary.

VDD

RD

+

vOUT = vDS

−

+
vIN = vGS

−

+
–VBIAS

vs
− +

iD

The changing voltage 
drop across RD causes 
an amplified (and 
inverted) version of the 
input signal to appear 
at the drain terminal.
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Load-Line Analysis of CS Amplifier
The operating point of the circuit can be determined 
by finding the intersection of the appropriate 
MOSFET iD vs. vDS characteristic and the load line:

DSDDDD viRV +=

vGS (V)

vDS (V)

iD (mA) load-line equation:
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Voltage Transfer Function

(1): transistor biased in cutoff region
(2): vIN > VT ; transistor biased in saturation region
(3): transistor biased in saturation region
(4): transistor biased in “resistive” or “triode” region

Goal: 
Operate the amplifier 
in the high-gain region, 
so that small changes 
in vIN result in large 
changes in vOUTvIN

vOUT
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Quiescent Operating Point
The operating point of the amplifier for zero input 
signal (vs = 0) is often referred to as the quiescent 
operating point or Q point.

The Q point should be chosen so that the output voltage 
is approximately centered between VDD and 0 V.
vs varies the input voltage around the Q point.

Note: The relationship between vOUT and vIN is not linear; 
this results in a distorted output voltage signal.  If the 
input signal amplitude is very small, however, we can 
have amplification with negligible distortion.
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Bias Circuit Example

VDD

RD

R1

R2
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Rules for Small-Signal Analysis
A DC supply voltage source acts as a short circuit

Even if AC current flows through the DC voltage source, 
the AC voltage across it is zero.

A DC supply current source acts as an open circuit
Even if AC voltage is applied across the current source, 
the AC current through it is zero.
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Small-Signal Equivalent Circuit
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1. Voltage amplifier 
input & output signals are voltages

2. Current amplifier
input and output signals are currents

3. Transconductance amplifier
input signal is voltage; 
output signal is current

4. Transresistance amplifier
input signal is current; 
output signal is voltage

Amplifier Types
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+
vin

−

+
vout
−
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−

amplifier

iin +
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−
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Two-Port Amplifier Model
for a transconductance amplifier
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Effect of Source and Load Resistances

Overall transconductance is degraded by the 
source resistance Rs and load resistance RL
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NMOSFET Summary: Current Flow

Gate current iG = 0
Body current iB = 0

iS = −iD

G

S D

p-type Si

n+ poly-Si

NMOSFET Structure

n+ n+

iG
NMOSFET Circuit Symbol

iDiS

iB

+
v

GS
−

− vDS +

If vGS ≤ VT, iD = 0
If vGS > VT, iD > 0

Current is limited by either
• the resistance of the 

inversion-charge layer, or
• velocity saturation

EE40 Summer 2005: Lecture 13                          Instructor: Octavian Florescu 28

• When vGS ≤ VT, an n-type channel is not formed.  
No electrons flow from SOURCE to DRAIN

“CUTOFF mode”

• When vGS > VT, an n-type channel (“inversion” layer of 
electrons at the surface of the semiconductor) is formed.

Electrons may flow from SOURCE to DRAIN (iD > 0)
If vDS < vGS–VT, the inversion layer exists across the 
entire channel length, and current iD increases with vDS

“LINEAR mode” or  “TRIODE mode”

If vDS ≥ vGS–VT, the inversion layer is pinched off at the 
drain end, and current iD does not increase with vDS

“SATURATION mode”

NMOSFET Summary: Modes of Operation
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NMOSFET Summary: I-V Characteristics

vDS

iD

0

p
n+n+

“SATURATION”
“LINEAR”

or
“TRIODE” vGS = VG3 > VG2

vGS = VG2 > VG1

vDS = vGS–VT ≡ VDSAT

p
n+ n+

p
n+n+

“CUTOFF”
( vGS ≤ VT )

p
n+n+

vGS = VG1 > VT
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NMOSFET Summary: I-V Equations
“SATURATION”“LINEAR” or “TRIODE”
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PMOSFET I-V Equations

“SATURATION” “LINEAR” or “TRIODE”
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Channel-length modulation:
The length of the pinch-off region, ΔL, increases with 
increasing vDS above vGS–VT.  It reduces the length of the 
inversion layer and hence the resistance of this layer.

→ iD increases noticeably with vDS, if L is small

NMOSFET Summary: Non-Ideal Behavior

vDS

iD

0

cross-sectional
view of channel:

inversion layer

VDSAT

λ is the slope
(channel-length
modulation parameter)
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Velocity Saturation:
In a very-short-channel MOSFET, iD saturates because 
the carrier velocity is limited to ~107 cm/sec

iD reaches a limit before pinch-off occurs

(continued)

< vGS–VT
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(continued)
Subthreshold Leakage:

For vGS ≤ VT, iD is exponentially dependent on vGS:

The leakage current specification sets the lower limit for 
the threshold voltage VT

leakage current, IOFF vGS

log iDS

0 VT

1/S is the slope
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NMOSFET Summary: Circuit Models
For analog circuit applications (where we are concerned 
only with changes in current and voltage signals, rather 
than their total values), the small-signal model is used:
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NMOSFET Summary: Circuit Models
For digital circuit applications, the MOSFET is modeled 
as a resistive switch:
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MOSFET is turned on 
(VGS = VDD) when VDS = VDD

As the load capacitor discharges, 

VDS decreases to 0 V

slope ≅ V DD / I DSAT

slope ≅ VDD / 2 IDSAT


