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Logistical Things 

• Lab 4 tomorrow 

• Lab 5 (active filter lab) on Wednesday 
– Prototype for future lab for EE40 

– Prelab is very short, sorry. 

– Please give us our feedback 

– Google docs for labs and general class 
comments now available (link shared via email) 

– Bring a music player if you have one (if not, you 
can use the signal generator in the lab) 

• HW5 due tomorrow at 2PM 

• HW6 due Friday at 5PM (also short) 

• Midterm next Wednesday 7/28 
– Focus is heavily on HW4, 5, 6, and Labs P1, 4, 5 

– Will reuse concepts from HW 1,2,3 
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Logistics 

• No lunch today 

• Slightly shorter lecture today 

• Midterm regrade requests due today 

• Office hours Cory 240 2:30-4PM or so 
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iClicker Question #1 

• Consider a capacitor with a capacitance of 
1𝑛𝐹. Total resistance of circuit is small ~1Ω. 

• If we compile an I-V table in lab with a 
voltage source and multimeter by: 
– Applying a set of test voltages 

– Measuring current through the capacitor for each 
source 

• What I-V characteristic will we get? 
– A. Horizontal line at I=0 

– B. Vertical line at I=0 

– C. Line of slope 1/RC 

– D. Horizontal line at I=V/1Ω 

– E. Something else 
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iClicker Question #2 

• Consider an inductor with an inductance of 
1μH. Total resistance of circuit is small ~1Ω. 

• If we compile an I-V table in lab with a 
voltage source and multimeter by: 
– Applying a set of test voltages 

– Measuring current through the inductor for each 
source 

• What I-V characteristic will we get? 
– A. Horizontal line at I=0 

– B. Vertical line at I=0 

– C. Line of slope R/L 

– D. Line at I=V/1Ω 

– E. Something else 
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Easy Method for AC Circuits 

• We want to find the voltage across the 

capacitor for the following circuit 

• Homogenous solution is easy, since source is 
irrelevant 

• Finding particular solution the usual way 
(plugging in a guess, finding coefficients that 
cancel) is painful 
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Easy Method for AC Circuits 

Guess 𝑣𝑐𝑝 = 𝐴𝑐𝑜𝑠 𝜔1𝑡 + 𝜙  
Guess 𝑉 𝑐𝑝 = 𝑘1𝑒𝑗𝜔𝑡 

 𝑣𝑖 = 𝑉𝑖𝑒
𝑗𝑤𝑡 

Plug into ODE 

Divide by 𝑒𝑗𝜔𝑡. Now 𝑡 is gone 

Solve for 𝑘1 (easy) 

𝑣𝑐𝑝 = 𝑅𝑒𝑎𝑙[𝑘1𝑒𝑗𝜔𝑡] 

Plug into ODE 

Solve for A and 𝜙 (hard) 

𝑣𝑐𝑝 = 𝐴𝑐𝑜𝑠 𝜔1𝑡 + 𝜙  
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Memory Circuits with Exponential Source 

• Homogeneous solution is just 𝐴𝑒−𝑡/𝑅𝐶 

• Pick particular solution 𝑉𝑂,𝑃 = 𝑘1𝑒𝑗𝑤𝑡, plug in: 

𝑘1𝑗𝜔𝑒𝑗𝜔𝑡 = −𝑘1

𝑒𝑗𝜔𝑡

𝑅𝐶
+ 𝑉𝑖

𝑒𝑗𝜔𝑡

𝑅𝐶
 

• Divide by 𝑒𝑗𝑤𝑡, and solve for k1 

𝑣𝐼 = 𝑉𝑖𝑒
𝑗𝑤𝑡    𝑡 > 0 

𝑉𝑂
′ = −

𝑉𝑂

𝑅𝐶
+ 𝑉𝑖

𝑒𝑗𝜔𝑡

𝑅𝐶
 

𝑘1 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
 𝑉𝑂,𝑃 𝑡 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
𝑒𝑗𝑤𝑡 

Real part of 𝑉𝑂,𝑃 gives solution for cosine source 
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Inverse Superposition 

𝑉𝑂,𝑃 𝑡 = 𝑉𝑖

1

1 + 𝑗𝜔𝑅𝐶
𝑒𝑗𝑤𝑡 

• Superposition tells us that our output 𝑉𝑂,𝑃 𝑡  will just 

be the sum of the effect of these two sources 

• Luckily for us, all complex numbers are the sum of 

their real and imaginary parts x = 𝑎 + 𝑗𝑏 

• Just find real part and we’re done!  
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Real Part of Expression 

𝑉𝑂,𝑃 𝑡 =
1

1 + 𝑗𝜔𝑅𝐶
𝑉𝑖𝑒

𝑗𝑤𝑡 

• Finding the real part of the expression is easy, it just 

involves some old school math that you’ve probably 

forgotten (HW5 has complex number exercises) 

• Key thing to remember is that complex numbers 

have two representations 

– Rectangular form: 𝑎 + 𝑗𝑏 

– Polar form: 𝑟𝑒𝑗𝜃 

𝑟 = 𝑎2 + 𝑏2 

𝜃 = arctan
𝑏

𝑎
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Real Part of Expression 

• What we have is basically the product of two 

complex numbers 

• Let’s convert the left one to polar form 

– Rectangular form: 𝑎 + 𝑗𝑏 

– Polar form: 𝑟𝑒𝑗𝜃 
𝑟 = 𝑎2 + 𝑏2 

𝜃 = arctan
𝑏

𝑎
 

𝑉𝑂,𝑃 𝑡 =
1

1 + 𝑗𝜔𝑅𝐶
𝑉𝑖𝑒

𝑗𝑤𝑡 

𝑉𝑂,𝑃 𝑡 =
1

𝑅𝑒𝑗𝜙
𝑉𝑖𝑒

𝑗𝑤𝑡 = 𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝜙𝑗𝑒𝑗𝑤𝑡 

𝜙 = arctan (𝜔𝑅𝐶) 
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Real Part of Expression 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝑗𝜙𝑒𝑗𝑤𝑡 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝑗(𝜙+𝜔𝑡) 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
(cos 𝜔𝑡 + 𝜙 + 𝑗𝑠𝑖𝑛(𝜔𝑡 + 𝜙)) 
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Real Part of Expression 

𝑉𝑖

1

1 + 𝑤𝑅𝐶 2
𝑒𝑗𝜙𝑒𝑗𝑤𝑡 

𝑉𝑂,𝑃 𝑡 =
𝑉𝑖

1 + 𝑤𝑅𝐶 2
(cos 𝜔𝑡 + 𝜙 + 𝑗𝑠𝑖𝑛(𝜔𝑡 + 𝜙)) 

• Superposition tells us that our output 𝑉𝑂,𝑃 𝑡  will just 

be the sum of the effect of these two sources 

• Thus, particular solution (forced response) of 

original cosine source is just the real part 

𝑉𝑂,𝑃 𝑡 =
𝑉𝑖

1 + 𝜔𝑅𝐶 2
cos 𝜔𝑡 + 𝜙  𝜙 = arctan (𝜔𝑅𝐶) 



14 EE40 Summer 2010 Hug 

Easy Method for AC Circuits 

Guess 𝑉 𝑐𝑝 = 𝑘1𝑒𝑗𝜔𝑡 

 𝑣𝑖 = 𝑉𝑖𝑒
𝑗𝑤𝑡 

Plug into ODE 

Divide by 𝑒𝑗𝜔𝑡. Now 𝑡 is gone 

Solve for 𝑘1 (easy) 

𝑣𝑐𝑝 = 𝑅𝑒𝑎𝑙[𝑘1𝑒𝑗𝜔𝑡] 

Write ODE 
Just as actually writing 
the ODE isn’t necessary 
for DC sources, we can 
avoid the ODE again in 
AC circuits:  
 
Impedance Analysis 
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Impedance 

𝑉𝐶,𝑃 𝑡 =
1

1 + 𝑗𝜔𝑅𝐶
𝑣𝐼(𝑡) 

For a complex exponential source: 

𝑉𝐶,𝑃 𝑡 =
1/𝑗𝑤𝐶

1/𝑗𝑤𝐶 + 𝑅
𝑣𝐼(𝑡) 

Rewrite as: 

Let 𝑍𝑐 = 1/𝑗𝑤𝐶 

𝑉𝐶,𝑃 𝑡 =
𝑍𝑐

𝑍𝑐 + 𝑅
𝑣𝐼(𝑡) Looks a lot like… 

voltage divider 

𝑣𝐼 = 𝑉𝑖𝑒
𝑗𝜔𝑡    𝑡 > 0 

Real part gives solution for 𝑣𝐼 = 𝑉𝑖cos (𝜔𝑡) 
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Method of Impedance Analysis (without Phasors) 

• Replace passive components with equivalent 

impedance, 𝑍𝑐 =
1

𝑗𝜔𝐶
, 𝑍𝐿 = 𝑗𝜔𝐿, 𝑍𝑅 = 𝑅 

• Replace all sources with complex exponentials 
• e.g. 𝑣 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜃 ⟹ 𝑣 (𝑡) = 𝐴𝑒𝑗(𝑤𝑡+𝜃)   

• Solve using Ohm’s Law of Impedances for 

complex exponential sources 

– 𝑣 𝑡 = 𝑖 𝑡 𝑍 

– Just like normal node voltage, but with complex 

numbers 

– Real part of node voltage 𝑉 𝑎 𝑡  gives true output 

𝑉𝑎 𝑡   
Lugging these complex exponential functions is algebraically annoying 
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Phasors (not in the book!) 

• Definition: A phasor is a complex number 

which represents a sinusoid 

• 𝑓 𝑡 = 𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜃  

• Three parameters 

– A: Magnitude 

– 𝜔: Frequency 

– 𝜃: Phase 

• The phasor representation of the sinusoid 

above is 𝐴𝑒𝑗𝜃 

• In shorthand we write phasor as 𝐴∠𝜃 
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Phasors 

• If we have a voltage 𝑉 𝑡 = 𝐴𝑐𝑜𝑠 𝜔𝑡 + 𝜃  

• The phasor version of the voltage is 

𝑉 =𝐴∠𝜃 

• If we have a phasor 𝐼 =𝛼∠𝜙, the time 

function this phasor represents is 

𝑖 𝑡 = 𝛼cos (𝜔𝑡 + 𝜙) 
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Why are phasors useful? 

• Sources that look like 𝐴𝑒𝑡(𝑗𝜔+𝜃) result in lots 
of 𝐴𝑒𝑡(𝑗𝑤+𝜃)  terms in our algebra 

• When you apply a sinusoidal source to a 
circuit, the amplitude and phase will vary 
across components, but it will always still be 
𝛼𝑒𝑡(𝑗𝜔+𝜙)  
– Important: 𝜔 doesn’t change! 

• Otherwise we’d need REALLY complex numbers 

• Thus, we’ll just replace our sources with a 
complex number 𝐴∠𝜙 and just keep in mind 
that this number represents a function 
throughout 
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Why are phasors useful? 

• We know that for complex exponential 
sources, we have that: 

– 𝑣 𝑡 = 𝑖 𝑡 𝑍 

– 𝑟𝑒𝑎𝑙 𝑣 𝑡 = 𝑟𝑒𝑎𝑙[𝑖 𝑡 𝑍] 

• Phasors are complex numbers 𝑉  and  𝐼  
which represent cosine functions 𝑣 𝑡  and 
𝑖(𝑡) 

• Cosine functions are just the real parts of 
complex exponentials 

• Thus, in the world of phasors, we can just 
rewrite Ohm’s Law of Impedances as: 

– 𝑉 =𝐼 𝑍 
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Method of Impedance Analysis (with Phasors) 

• Replace passive components with equivalent 

impedance, 𝑍𝑐 =
1

𝑗𝜔𝐶
, 𝑍𝐿 = 𝑗𝜔𝐿, 𝑍𝑅 = 𝑅 

• Replace all sources with phasor representation: 
e.g. 𝑣 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜃 ⟹ 𝑉 𝑡 = 𝐴∠𝜃 

• Solve using Ohm’s Law of Impedances: 

– 𝑣 = 𝑖 𝑍 

– Just like normal node voltage, but with complex 
numbers, attaining voltage phasors 𝑉 𝑎, 𝑉 𝑏 , … 

– Output 𝑉𝑎(𝑡) is just |𝑉 𝑎|cos(𝜔𝑡 + ∠𝑉 𝑎) 

• Original sources are implicitly represented by 
phasors 
– Time is gone completely from our problem 
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Example 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

𝜔 = 100 

• 𝑍𝑅 = 10000, 𝑍𝐶 =
1

𝑗𝜔𝐶
= −10000𝑗 

• 𝑉 = 𝑉𝑖∠0 = 5∠0 

• 𝑍𝑒𝑞 = 10000 − 10000𝑗 

• 𝐼 =
5∠0

10000−10000𝑗
 

 

Find 𝑖(𝑡) in 

steady state 
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Example 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

𝜔 = 100 

• 𝐼 =
5∠0

10000−10000𝑗
 

• Polar divided by non polar, so convert 

bottom to polar 

• 10000 − 10000𝑗 = 10000 2∠
−𝜋

4
 

 

Find 𝑖(𝑡) in 

steady state 
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Example 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

𝜔 = 100 

• 𝐼 =
5∠0

10000−10000𝑗
 

• 10000 − 10000𝑗 = 10000 2∠
−𝜋

4
 

• So 𝐼 =
5∠0

10000 2∠
−𝜋

4

=
1

2000 2
∠

𝜋

4
 

 

Find 𝑖(𝑡) in 

steady state 
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Example 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

𝜔 = 100 

• 𝐼 =
1

2000 2
∠

𝜋

4
 

• 𝑖 𝑡 =
1

2000 2
cos (100𝑡 +

𝜋

4
) [in steady state] 

 

Find 𝑖(𝑡) in 

steady state 
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Example 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

• Current has same 
shape as voltage 

• Current is 10000 2 
times smaller than 
source voltage 

• Current leads 
source voltage by 

𝜋

4
 

radians or 
𝜋

400
 seconds 

𝑖 𝑡 =
1

2000 2
cos (100𝑡 +

𝜋

4
) 

Not to scale 
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Harder Example 

• On board 
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Filters 

• Often, we’ll want to build circuits which 

react differently based on different signal 

frequencies, e.g. 

– Splitting audio signals into low and high 

portions (for delivery to tweeter and 

subwoofer) 

– Removing noise of a particular frequency (e.g. 

60 Hz noise or vuvuzela sound) 

– Removing signals except those at a certain 

frequency 
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Example Filter 

• 𝑉 𝐶 =
𝑍𝐶

𝑍𝐶+𝑍𝑅
𝑉 𝐼 

• 𝑉 𝐶 =
−106𝑗/𝜔

−106𝑗/𝑤+105 𝑉 𝐼 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

Find vc(𝑡) in 

steady state 

𝑍𝐶 = −106𝑗/𝜔 

𝑍𝑅 = 105 

- Transfer Function 𝑯(𝒋𝝎) 
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Transfer Functions 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

• Maps system input signal to system output 
signal 

– Plug an input voltage Acos 𝜔𝑡 + 𝜙  into 𝑉 𝐼 

– Get an output voltage 
𝐴 𝐻 𝑗𝜔 cos 𝜔𝑡 + 𝜙 + ∠𝐻 𝑗𝜔  

• Output is scaled and shifted in time 
– Scaling and shifting depend on frequency 

• Frequency is unchanged (linear system) 

• Tells you how system will respond to any 
frequency, a.k.a. frequency response 
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Using a Transfer Function 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

• Suppose 𝑣𝑖(𝑡) is 3cos (50𝑡 +
𝜋

4
) 

– 𝑉 𝐼 = 3∠
𝜋

4
 

– 𝐻 𝑗50 =
1

1+5𝑗
 

• Output phasor 𝑉 𝐶 is just 𝑉 𝐼 × 𝐻 𝑗50  

– 𝑉 𝐶 =
3

26
∠(

𝜋

4
− 1.37) 

– 𝑣𝑐 𝑡 =
3

26
cos (50𝑡 +

𝜋

4
− 1.37) 

|𝐻 𝑗50 | = 1/ 26 

∠𝐻 𝑗50 = −𝐴𝑟𝑐𝑇𝑎𝑛[5/1] 
= −1.37 
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Using a Transfer Function (general) 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

• Suppose 𝑣𝑖(𝑡) is 3cos (𝜔𝑡 +
𝜋

4
) 

– 𝑉 𝐼 = 3∠
𝜋

4
 

– 𝐻 𝑗𝑤 =
1

1+0.1𝑗𝜔
 

• Output phasor 𝑉 𝐶 is just 𝑉 𝐼 × 𝐻 𝑗50  

– 𝑉 𝐶 =
3

1+0.01𝜔2
∠(

𝜋

4
− 𝐴𝑟𝑐𝑇𝑎𝑛

0.1𝜔

1
) 

– 𝑣𝑐 𝑡 =
3

1+0.01𝜔2
cos (50𝑡 +

𝜋

4
− 𝐴𝑟𝑐𝑇𝑎𝑛[

0.1𝜔

1
]) 

|𝐻 𝑗𝑤 | = 1/ 1 + 0.01𝜔2 

∠𝐻 𝑗𝜔 = −𝐴𝑟𝑐𝑇𝑎𝑛[0.1𝜔/1] 
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Bode Magnitude Plot 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

 

• Magnitude plot is just a plot of |𝐻 𝑗𝜔 | as 

a function of 𝜔 

 

|𝐻 𝑗𝜔 | = 1/ 1 + 0.01𝜔2 

Linear Scale Log Scale 
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Bode Magnitude Plot in Context of Circuit 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

𝑉 𝐶 =
1

1 + 0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

|𝐻 𝑗𝜔 | = 1/ 1 + 0.01𝜔2 

All frequencies below 𝑤𝑐 = 10 get 

through pretty well. Above, that 

increasingly attenuated 
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Bode Phase Plot 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

 

• Phase plot is just a plot of∠𝐻 𝑗𝜔  as a 

function of 𝜔 

 

∠𝐻 𝑗𝜔 = −𝐴𝑟𝑐𝑇𝑎𝑛[0.1𝜔/1] 

Linear Scale Semilog Scale 



36 EE40 Summer 2010 Hug 

Bode Phase Plot in Context of Circuit 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

𝑉 𝐶 =
1

1 + 0.1𝑗𝑤
𝑉 𝐼 = 𝐻(𝑗𝜔)𝑉 𝐼 

∠𝐻 𝑗𝜔 = −𝐴𝑟𝑐𝑇𝑎𝑛[0.1𝜔/1] 

All frequencies below 𝑤𝑐 = 10  

move in time with the source, above 

that, 𝑣𝑐 gets out of phase 
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Frequency vs. Time Domain 

• Almost always, our signals consist of 
multiple frequencies 

• Examples: 

– Sound made when you press a buttons on a 
phone is two pure sine waves added together 
(DTMF) 

– Antennas on radio theoretically pick up ALL 
frequencies of ALL transmissions 

• Using a technique known as the Fourier 
Transform, we can convert any signal into 
a sum of sinusoids 

– See EE20 for more details 
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Fourier Transform Example 

• If someone whistles a signal that is 

approximately sin (3000𝑡), and we apply 

the Fourier Transform, then: 

 



39 EE40 Summer 2010 Hug 

Fourier Transform Example 

• The 1 button on a phone is just 𝑣 𝑡 =

sin
697

2𝜋
𝑡 + sin (

1209

2𝜋
𝑡) 
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Fourier Transform Example 

• If we apply a filter with the frequency 

response on the left to the signal on the right 

 

Then we’ll get: 
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Types of Filters 

• Passive Filters 

– Filters with no sources (i.e. just R, L, and C) 

– Don’t require power source 

– Scale to larger signals (no op-amp saturation) 

– Cheap 

• Active Filters 

– Filters with active elements, e.g. op-amps 

– More complex transfer function 
• No need for inductors (can be large and expensive, 

hard to make in integrated circuits) 

• More easily tunable 

– Response more independent of load (buffering) 
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Filter Examples 

• On board 
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Manually Plotting 

• In this day and age, it is rarely necessary 
to make our Bode plots manually 

• However, learning how to do this will build 
your intuition for what a transfer function 
means 

• Manual plotting of bode plots is essentially 
a set of tricks for manually plotting curves 
on a loglog axis 

• We will only teach a subset of the full 
method (see EE20 for a more thorough 
treatment) 
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Example Filter 

• 𝑉 𝐶 =
1

1+0.1𝑗𝑤
𝑉 𝐼 

• 𝑉 𝐶 =
1

1+0.01𝜔2∠𝐴𝑟𝑐𝑇𝑎𝑛[0.1𝜔]
𝑉 𝐼 

• 𝑉 𝐶 =
1

1+0.01𝜔2
∠ − 𝐴𝑟𝑐𝑇𝑎𝑛[0.1𝜔] 𝑉 𝐼 

• Intuitive plot on board 

• More thorough algorithm next time 

𝑣𝐼 = 𝑉𝑖𝑐𝑜𝑠 𝜔𝑡 ,  𝑡 > 0 

𝑅 = 10,000Ω 

𝐶 = 1𝜇𝐹 

𝑉𝑖 = 5𝑉 

Find vc(𝑡) in 

steady state 
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Extra Slides 
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Why do equivalent Impedances work? 

• Components with memory just integrate or 

take the derivative of 𝑒𝑞1𝑡, giving scaled 

versions of the same function 

– This is unlike forcing functions like 𝑡3 or 

cos (𝜔𝑡) 

– This allows us to divide by the source, 

eliminating 𝑡 from the problem completely 

– Left with an algebra problem 
– [For those of you who have done integral transforms, this whole process can be 

thought of as just using Laplace/Fourier transforms] 


