# EE40 <br> Lecture 11 Josh Hug 

## 7/19/2010

## Logistical Things

- Lab 4 tomorrow
- Lab 5 (active filter lab) on Wednesday
- Prototype for future lab for EE40
- Prelab is very short, sorry.
- Please give us our feedback
- Google docs for labs and general class comments now available (link shared via email)
- Bring a music player if you have one (if not, you can use the signal generator in the lab)
- HW5 due tomorrow at 2PM
- HW6 due Friday at 5PM (also short)
- Midterm next Wednesday 7/28
- Focus is heavily on HW4, 5, 6, and Labs P1, 4, 5
- Will reuse concepts from HW 1,2,3


## Logistics

- No lunch today
- Slightly shorter lecture today
- Midterm regrade requests due today
- Office hours Cory 240 2:30-4PM or so


## iClicker Question \#1

- Consider a capacitor with a capacitance of $1 n F$. Total resistance of circuit is small $\sim 1 \Omega$.
- If we compile an I-V table in lab with a voltage source and multimeter by:
- Applying a set of test voltages
- Measuring current through the capacitor for each source
- What I-V characteristic will we get?
- A. Horizontal line at $I=0$
- B. Vertical line at $\mathrm{I}=0$
- C. Line of slope 1/RC
- D. Horizontal line at $\mathrm{I}=\mathrm{V} / 1 \Omega$
- E. Something else



## iClicker Question \#2

- Consider an inductor with an inductance of $1 \mu \mathrm{H}$. Total resistance of circuit is small $\sim 1 \Omega$.
- If we compile an I-V table in lab with a voltage source and multimeter by:
- Applying a set of test voltages
- Measuring current through the inductor for each source
- What I-V characteristic will we get?
- A. Horizontal line at $\mathrm{I}=0$
- B. Vertical line at $\mathrm{I}=0$
- C. Line of slope R/L
- D. Line at $\mathrm{I}=\mathrm{V} / 1 \Omega$
- E. Something else



## Easy Method for AC Circuits

- We want to find the voltage across the capacitor for the following circuit

- Homogenous solution is easy, since source is irrelevant
- Finding particular solution the usual way (plugging in a guess, finding coefficients that cancel) is painful


## Easy Method for AC Circuits



$$
\widetilde{v_{i}}=V_{i} e^{j w t}
$$

Guess $v_{c p}=A \cos \left(\omega_{1} t+\phi\right)$

Plug into ODE


Solve for A and $\phi$ (hard)

$$
v_{c p}=A \cos \left(\omega_{1} t+\phi\right)
$$

Guess $\tilde{V}_{c p}=k_{1} e^{j \omega t}$


Plug into ODE


Divide by $e^{j \omega t}$. Now $t$ is gone Solve for $k_{1}$ (easy)

$$
v_{c p}=\operatorname{Real}\left[k_{1} e^{j \omega t}\right]_{\mathrm{Hug}},
$$

## Memory Circuits with Exponential Source



$$
\begin{aligned}
v_{I} & =V_{i} e^{j w t} \quad t>0 \\
V_{O}^{\prime} & =-\frac{V_{O}}{R C}+V_{i} \frac{e^{j \omega t}}{R C}
\end{aligned}
$$

- Homogeneous solution is just $A e^{-t / R C}$
- Pick particular solution $V_{O, P}=k_{1} e^{j w t}$, plug in:

$$
k_{1} j \omega e^{j \omega t}=-k_{1} \frac{e^{j \omega t}}{R C}+V_{i} \frac{e^{j \omega t}}{R C}
$$

- Divide by $e^{j w t}$, and solve for $\mathrm{k}_{1}$
$k_{1}=V_{i} \frac{1}{1+j \omega R C} \quad V_{O, P}(t)=V_{i} \frac{1}{1+j \omega R C} e^{j w t}$


## Inverse Superposition



- Superposition tells us that our output $V_{O, P}(t)$ will just be the sum of the effect of these two sources

$$
V_{O, P}(t)=V_{i} \frac{1}{1+j \omega R C} e^{j w t}
$$

- Luckily for us, all complex numbers are the sum of their real and imaginary parts $\mathrm{x}=a+j b$
- Just find real part and we're done!


## Real Part of Expression

- Finding the real part of the expression is easy, it just involves some old school math that you've probably forgotten (HW5 has complex number exercises)

$$
V_{O, P}(t)=\frac{1}{1+j \omega R C} V_{i} e^{j w t}
$$

- Key thing to remember is that complex numbers have two representations
- Rectangular form: $a+j b$
- Polar form: $r e^{j \theta}$

$$
\begin{aligned}
r & =\sqrt{a^{2}+b^{2}} \\
\theta & =\arctan \left(\frac{b}{a}\right)
\end{aligned}
$$



## Real Part of Expression

- What we have is basically the product of two complex numbers
- Let's convert the left one to polar form

$$
V_{O, P}(t)=\frac{1}{1+j \omega R C} V_{i} e^{j w t}
$$

- Rectangular form: $a+j b$

$$
r=\sqrt{a^{2}+b^{2}}
$$

- Polar form: $r e^{j \theta}$

$$
\theta=\arctan \left(\frac{b}{a}\right)
$$

$$
\begin{gathered}
V_{O, P}(t)=\frac{1}{R e^{j \phi}} V_{i} e^{j w t}=V_{i} \frac{1}{\sqrt{1+(w R C)^{2}}} e^{\phi j} e^{j w t} \\
\phi=\arctan (\omega R C)
\end{gathered}
$$

## Real Part of Expression

$$
\begin{array}{r}
V_{i} \frac{1}{\sqrt{1+(w R C)^{2}}} e^{j \phi} e^{j w t} \\
V_{i} \frac{1}{\sqrt{1+(w R C)^{2}}} e^{j(\phi+\omega t)}
\end{array}
$$

$$
V_{i} \frac{1}{\sqrt{1+(w R C)^{2}}}(\cos (\omega t+\phi)+j \sin (\omega t+\phi))
$$

## Real Part of Expression



- Superposition tells us that our output $V_{O, P}(t)$ will just be the sum of the effect of these two sources

$$
V_{O, P}(t)=\frac{V_{i}}{\sqrt{1+(w R C)^{2}}}(\cos (\omega t+\phi)+j \sin (\omega t+\phi))
$$

- Thus, particular solution (forced response) of original cosine source is just the real part

$$
V_{O, P}(t)=\frac{V_{i}}{(1+\omega R C)^{2}} \cos (\omega t+\phi) \quad \phi=\arctan _{(\omega)}(\omega)
$$

## Easy Method for AC Circuits

Just as actually writing the ODE isn't necessary for DC sources, we can avoid the ODE again in AC circuits:

Impedance Analysis


## Impedance

$$
v_{I}=V_{i} e^{j \omega t} \quad t>0
$$

For a complex exponential source:

$$
V_{C, P}(t)=\frac{1}{1+j \omega R C} v_{I}(t)
$$

Rewrite as:

$$
V_{C, P}(t)=\frac{1 / j w C}{1 / j w C+R} v_{I}(t)
$$

Let $Z_{c}=1 / j w C$

$$
V_{C, P}(t)=\frac{Z_{c}}{Z_{c}+R} v_{I}(t) \quad \text { Looks a lot like } \ldots,
$$

Real part gives solution for $v_{I}=V_{i} \cos (\omega t)$

## Method of Impedance Analysis (without Phasors)

- Replace passive components with equivalent impedance, $Z_{c}=\frac{1}{j \omega C}, Z_{L}=j \omega L, Z_{R}=R$
- Replace all sources with complex exponentials - e.g. $v(t)=A \cos (\omega t+\theta) \Rightarrow \tilde{v}(t)=A e^{j(w t+\theta)}$
- Solve using Ohm's Law of Impedances for complex exponential sources
$-\tilde{v}(t)=\tilde{\imath}(t) Z$
- Just like normal node voltage, but with complex numbers
- Real part of node voltage $\tilde{V}_{a}(t)$ gives true output $V_{a}(t)$
Lugging these complex exponential functions is algebraically annoying


## Phasors (not in the book!)

- Definition: A phasor is a complex number which represents a sinusoid
- $f(t)=A \cos (\omega t+\theta)$
- Three parameters
- A: Magnitude
- $\omega$ : Frequency
- $\theta$ : Phase
- The phasor representation of the sinusoid above is $A e^{j \theta}$
- In shorthand we write phasor as $A \angle \theta$


## Phasors

- If we have a voltage $V(t)=A \cos (\omega t+\theta)$
- The phasor version of the voltage is
$\hat{V}=A \angle \theta$
- If we have a phasor $\hat{I}=\alpha \angle \phi$, the time function this phasor represents is $i(t)=\alpha \cos (\omega t+\phi)$


## Why are phasors useful?

- Sources that look like $A e^{t(j \omega+\theta)}$ result in lots of $A e^{t(j w+\theta)}$ terms in our algebra
- When you apply a sinusoidal source to a circuit, the amplitude and phase will vary across components, but it will always still be $\alpha e^{t(j \omega+\phi)}$
- Important: $\omega$ doesn't change!
- Otherwise we'd need REALLY complex numbers
- Thus, we'll just replace our sources with a complex number $A \angle \phi$ and just keep in mind that this number represents a function throughout


## Why are phasors useful?

- We know that for complex exponential sources, we have that:
$-\tilde{v}(t)=\tilde{\imath}(t) Z$
$-\operatorname{real}[\tilde{v}(t)]=\operatorname{real}[\tilde{\imath}(t) Z]$
- Phasors are complex numbers $\hat{V}$ and $\hat{I}$ which represent cosine functions $v(t)$ and $i(t)$
- Cosine functions are just the real parts of complex exponentials
- Thus, in the world of phasors, we can just rewrite Ohm's Law of Impedances as:

$$
-\hat{V}=\hat{I} Z
$$

## Method of Impedance Analysis (with Phasors)

- Replace passive components with equivalent impedance, $Z_{c}=\frac{1}{j \omega C}, Z_{L}=j \omega L, Z_{R}=R$
- Replace all sources with phasor representation:
e.g. $v(t)=A \cos (\omega t+\theta) \Longrightarrow \hat{V}(t)=A \angle \theta$
- Solve using Ohm's Law of Impedances:
$-\hat{v}=\hat{\imath} Z$
- Just like normal node voltage, but with complex numbers, attaining voltage phasors $\widehat{V}_{a}, \widehat{V}_{b}, \ldots$
- Output $V_{a}(t)$ is just $\left|\hat{V}_{a}\right| \cos \left(\omega t+\angle \widehat{V}_{a}\right)$
- Original sources are implicitly represented by phasors
- Time is gone completely from our problem


## Example

$$
\begin{array}{cc}
v_{I}=V_{i} \cos (\omega t), & t>0 \\
R=10,000 \Omega & \\
C=1 \mu F & \text { Find } i(t) \text { in } \\
V_{i}=5 \mathrm{~V} & \text { steady state } \\
\omega=100 &
\end{array}
$$

- $Z_{R}=10000, Z_{C}=\frac{1}{j \omega C}=-10000 j$
- $\hat{V}=V_{i} \angle 0=5 \angle 0$
- $Z_{\text {eq }}=10000-10000 j$
- $\hat{I}=\frac{5 \angle 0}{10000-10000 j}$


## Example

$$
\begin{array}{cc}
v_{I}=V_{i} \cos (\omega t), & t>0 \\
R=10,000 \Omega & \\
C=1 \mu F & \text { Find } i(t) \text { in } \\
V_{i}=5 \mathrm{~V} & \text { steady state } \\
\omega=100 &
\end{array}
$$

- $\hat{I}=\frac{5 \angle 0}{10000-10000 j}$
- Polar divided by non polar, so convert bottom to polar
- $10000-10000 j=10000 \sqrt{2} \angle \frac{-\pi}{4}$


## Example

$$
\begin{array}{cc}
v_{I}=V_{i} \cos (\omega t), & t>0 \\
R=10,000 \Omega & \\
C=1 \mu F & \text { Find } i(t) \text { in } \\
V_{i}=5 V & \text { steady state } \\
\omega=100 &
\end{array}
$$

- $\hat{I}=\frac{5 \angle 0}{10000-10000 j}$
- $10000-10000 j=10000 \sqrt{2} \angle \frac{-\pi}{4}$
- So $\hat{I}=\frac{5 \angle 0}{10000 \sqrt{2} \angle \frac{-\pi}{4}}=\frac{1}{2000 \sqrt{2}} \angle \frac{\pi}{4}$


## Example

$$
\begin{array}{cc}
v_{I}=V_{i} \cos (\omega t), & t>0 \\
R=10,000 \Omega & \\
C=1 \mu F & \text { Find } i(t) \text { in } \\
V_{i}=5 \mathrm{~V} & \text { steady state } \\
\omega=100 &
\end{array}
$$

- $\hat{I}=\frac{1}{2000 \sqrt{2}} \angle \frac{\pi}{4}$
- $i(t)=\frac{1}{2000 \sqrt{2}} \cos \left(100 t+\frac{\pi}{4}\right)$ [in steady state]


## Example

$$
v_{I}=V_{i} \cos (\omega t), \quad t>0
$$

$$
i(t)=\frac{1}{2000 \sqrt{2}} \cos \left(100 t+\frac{\pi}{4}\right)
$$

- Current has same shape as voltage
- Current is $10000 \sqrt{2}$ times smaller than source voltage
- Current leads source voltage by $\frac{\pi}{4}$ radians or
$\frac{\pi}{400}$ seconds
Not to scale


## Harder Example

- On board


## Filters

- Often, we'll want to build circuits which react differently based on different signal frequencies, e.g.
- Splitting audio signals into low and high portions (for delivery to tweeter and subwoofer)
- Removing noise of a particular frequency (e.g. 60 Hz noise or vuvuzela sound)
- Removing signals except those at a certain frequency


## Example Filter



$$
\begin{gathered}
v_{I}=V_{i} \cos (\omega t), \\
R=10,000 \Omega \\
C=1 \mu F \\
V_{i}=5 V
\end{gathered}
$$

$$
t>0
$$

Find $v_{c}(t)$ in steady state

- $\hat{V}_{C}=\frac{Z_{C}}{Z_{C}+Z_{R}} \hat{V}_{I}$
- $\widehat{V}_{C}=\frac{-10^{6} j / \omega}{-10^{6} j / w+10^{5}} \widehat{V}_{I}$
- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}$
- Transfer Function $H(\boldsymbol{j} \omega)$

$$
\begin{gathered}
Z_{C}=-10^{6} j / \omega \\
Z_{R}=10^{5}
\end{gathered}
$$

## Transfer Functions

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}=H(j \omega) \widehat{V}_{I}$
- Maps system input signal to system output signal
- Plug an input voltage $A \cos (\omega t+\phi)$ into $\hat{V}_{I}$
- Get an output voltage $A|H(j \omega)| \cos (\omega t+\phi+\angle H(j \omega))$
- Output is scaled and shifted in time
- Scaling and shifting depend on frequency
- Frequency is unchanged (linear system)
- Tells you how system will respond to any frequency, a.k.a. frequency response


## Using a Transfer Function

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}=H(j \omega) \widehat{V}_{I}$
- Suppose $v_{i}(t)$ is $3 \cos \left(50 t+\frac{\pi}{4}\right)$

$$
-\hat{V}_{I}=3 \angle \frac{\pi}{4}
$$

$$
|H(j 50)|=1 / \sqrt{26}
$$

$$
\angle H(j 50)=-\operatorname{ArcTan}[5 / 1]
$$

$$
=-1.37
$$

- Output phasor $\hat{V}_{C}$ is just $\widehat{V}_{I} \times H(j 50)$
$-\hat{V}_{C}=\frac{3}{\sqrt{26}}<\left(\frac{\pi}{4}-1.37\right)$
$-v_{c}(t)=\frac{3}{\sqrt{26}} \cos \left(50 t+\frac{\pi}{4}-1.37\right)$


## Using a Transfer Function (general)

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}=H(j \omega) \widehat{V}_{I}$
- Suppose $v_{i}(t)$ is $3 \cos \left(\omega t+\frac{\pi}{4}\right)$
$\begin{array}{ll}-\hat{V}_{I}=3 \angle \frac{\pi}{4} & |H(j \omega)|=1 / \sqrt{1+0.01 \omega^{2}} \\ 1 & \angle H(j \omega)=-\operatorname{ArcTan}[0.1 \omega / 1]\end{array}$
$-H(j w)=\frac{1}{1+0.1 j \omega}$
- Output phasor $\widehat{V}_{C}$ is just $\widehat{V}_{I} \times H(j 50)$
$-\hat{V}_{C}=\frac{3}{\sqrt{1+0.01 \omega^{2}}}<\left(\frac{\pi}{4}-\operatorname{ArcTan}\left[\frac{0.1 \omega}{1}\right]\right)$
$-v_{c}(t)=\frac{3}{\sqrt{1+0.01 \omega^{2}}} \cos \left(50 t+\frac{\pi}{4}-\operatorname{ArcTan}\left[\frac{0.1 \omega}{1}\right]\right)$


## Bode Magnitude Plot

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}=H(j \omega) \widehat{V}_{I}$

$$
|H(j \omega)|=1 / \sqrt{1+0.01 \omega^{2}}
$$

- Magnitude plot is just a plot of $|H(j \omega)|$ as a function of $\omega$


EE40 Summer 2010 Linear Neale


Log Scale

## Bode Magnitude Plot in Context of Circuit

$$
\underbrace{\omega}_{R} \underbrace{}_{v_{i}} \quad \begin{gathered}
v_{I}=V_{i} \cos (\omega t), \\
R=10,000 \Omega \\
C=1 \mu F \\
V_{i}=5 V
\end{gathered}
$$

$$
\hat{V}_{C}=\frac{1}{1+0.1 j w} \hat{V}_{I}=H(j \omega) \hat{V}_{I}
$$

$$
|H(j \omega)|=1 / \sqrt{1+0.01 \omega^{2}}
$$

All frequencies below $w_{c}=10$ get through pretty well. Above, that increasingly attenuated

## Bode Phase Plot

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \hat{V}_{I}=H(j \omega) \hat{V}_{I}$

$$
\angle H(j \omega)=-\operatorname{ArcTan}[0.1 \omega / 1]
$$

- Phase plot is just a plot of $\angle H(j \omega)$ as a function of $\omega$


EE40 Summer 2010 Linear Neale


Semilog Scale

## Bode Phase Plot in Context of Circuit

$$
\begin{aligned}
& v_{I}=V_{i} \cos (\omega t), \\
& t>0 \\
& R=10,000 \Omega \\
& C=1 \mu F \\
& V_{i}=5 \mathrm{~V}
\end{aligned}
$$



All frequencies below $w_{c}=10$ move in time with the source, above that, $v_{c}$ gets out of phase

## Frequency vs. Time Domain

- Almost always, our signals consist of multiple frequencies
- Examples:
- Sound made when you press a buttons on a phone is two pure sine waves added together (DTMF)
- Antennas on radio theoretically pick up ALL frequencies of ALL transmissions
- Using a technique known as the Fourier Transform, we can convert any signal into a sum of sinusoids
- See EE20 for more details


## Fourier Transform Example

- If someone whistles a signal that is approximately $\sin (3000 t)$, and we apply the Fourier Transform, then:





## Fourier Transform Example

- The 1 button on a phone is just $v(t)=$ $\sin \left(\frac{697}{2 \pi} t\right)+\sin \left(\frac{1209}{2 \pi} t\right)$





## Fourier Transform Example

- If we apply a filter with the frequency response on the left to the signal on the right



Then we'll get:


## Types of Filters

- Passive Filters
- Filters with no sources (i.e. just R, L, and C)
- Don't require power source
- Scale to larger signals (no op-amp saturation)
- Cheap
- Active Filters
- Filters with active elements, e.g. op-amps
- More complex transfer function
- No need for inductors (can be large and expensive, hard to make in integrated circuits)
- More easily tunable
- Response more independent of load (buffering)


## Filter Examples

- On board


## Manually Plotting

- In this day and age, it is rarely necessary to make our Bode plots manually
- However, learning how to do this will build your intuition for what a transfer function means
- Manual plotting of bode plots is essentially a set of tricks for manually plotting curves on a loglog axis
- We will only teach a subset of the full method (see EE20 for a more thorough treatment)


## Example Filter

$$
\begin{array}{cl}
v_{I}=V_{i} \cos (\omega t), & t>0 \\
R=10,000 \Omega & \\
C=1 \mu F & \text { Find } \mathrm{v}_{\mathrm{c}}(t) \text { in } \\
V_{i}=5 V & \text { steady state }
\end{array}
$$

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}$
- $\hat{V}_{C}=\frac{1}{\sqrt{1+0.01 \omega^{2}} \angle \operatorname{ArcTan}[0.1 \omega]} \widehat{V}_{I}$
- $\widehat{V}_{C}=\frac{1}{\sqrt{1+0.01 \omega^{2}}}<-\operatorname{ArcTan}[0.1 \omega] \widehat{V}_{I}$
- Intuitive plot on board
- More thorough algorithm next time


## Extra Slides

## Why do equivalent Impedances work?

- Components with memory just integrate or take the derivative of $e^{q_{1} t}$, giving scaled versions of the same function
- This is unlike forcing functions like $t^{3}$ or $\cos (\omega t)$
- This allows us to divide by the source, eliminating $t$ from the problem completely
- Left with an algebra problem
- [For those of you who have done integral transforms, this whole process can be thought of as just using Laplace/Fourier transforms]

