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EE40 S

Logistical Things

Lab 4 tomorrow
Lab 5 (active filter lab) on Wednesday

— Prototype for future lab for EE40
— Prelab Is very short, sorry.
— Please give us our feedback

— Google docs for labs and general class |
comments now available (link shared via email)

— Bring a music player if you have one (if not, you
can use the signal generator in the lab)

HWS5 due tomorrow at 2PM
HW6 due Friday at 5PM (also short)
Midterm next Wednesday 7/28

— Focus is heavily on HWA4, 5, 6, and Labs P1, 4, 5
— Will reuse concepts from HW 1,2,3
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Logistics

* No lunch today

 Slightly shorter lecture today

* Midterm regrade requests due today

» Office hours Cory 240 2:30-4PM or so
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IClicker Question #1

» Consider a capacitor with a capacitance of
1nF. Total resistance of circuit is small ~1).

* If we compile an |-V table in lab with a
voltage source and multimeter by:

— Applying a set of test voltages

— Measuring current through the capacitor for each
source

* What I-V characteristic will we get?
— A. Horizontal line at 1I=0

— B. Vertical line at |=0 e

— C. Line of slope 1/RC o e -
— D. Horizontal line at 1=V/1Q
— E. Something else G S T S O B
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IClicker Question #2

 Consider an inductor with an inductance of
1uH. Total resistance of circuit is small ~1().

* If we compile an |-V table in lab with a
voltage source and multimeter by:
— Applying a set of test voltages

— Measuring current through the inductor for each
source

* What I-V characteristic will we get?
— A. Horizontal line at 1I=0

— B. Vertical line at I=0 S
— C. Line of slope R/L o e e e e
— E. Something else G S T S O B
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Easy Method for AC Circuits

* We want to find the voltage across the
capacitor for the following circuit

R
W

V“-cos{[n}]r} C=

« Homogenous solution Is easy, since source Is
Irrelevant

* Finding particular solution the usual way

(plugging in a guess, finding coefficients that
cancel) Is painful
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Easy Method for AC Circuits

D = Vedwt

V me(t} t) e
V; cos(,1) o C v'f'P
Jr‘.f’ sin(@, n

Guess v, = Acos(w1t + @)

==
+

— wt
Guess ch = k,e/?

Plug into ODE
20 _@
Solve for A and ¢ (hard) Plug into ODE
Il 2

Divide by e/®t. Now t is gon
Solve for k, (easy)
>

vCp — Real [klejwt]Hug 7

Vep = Acos(wyt + @)
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Memory Circuits with Exponential Source

UI —_ Vieth t > O

A
R + ]
C'?v{ C=V, VO V e](l)t
] V), =——+41V;
0 RC "' RC

- Homogeneous solution is just Ae~/R¢

» Pick particular solution V, p = k;e/%¢, plug in:

.. eja)t eja)t
1 Jot — __ I,  —
kijwe k4 RC + V; RC
» Divide by e/%*, and solve for k,
1 1 .
ki =V, V,p(t) =V, jwt
1 = i ¥ jwRC 0. = Vi 5oRe®

CE40 Summer 2010 Real part of Vj, p gives solution for cosine source ,,, ¢




Inverse Superposition

Lm {OF [) C= v

am mln

. Superp03|t|on tells us that our output V, p(t) will just
be the sum of the effect of these two sources

1 |
Vor(t) =ViT7 TwRC e/t

 Luckily for us, all complex numbers are the sum of
their real and imaginary parts x = a + jb

« Just find real part and we’re done!
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Real Part of Expression

* Finding the real part of the expression is easy, it just
involves some old school math that you've probably
forgotten (HW5 has complex number exercises)

« Key thing to remember is that complex numbers
have two representations

— Rectangular form: a + jb Im(Z)

— Polar form: re/? b — — — — (@b

T
r =+ a2 + b2 R

b "iglg | Re(Z)
6@ = arctan | — .
a

EE40 Summer 2010
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Real Part of Expression

« What we have is basically the product of two
complex numbers

» Let’s convert the left one to polar form

— Rectangular form: a + jb y — \/az + p2

— Polar form: re’? b
6@ = arctan | —
a

1 . 1 .
— —__V.pJWt — . bJj pjwt
Vor(t) T Ve V; TTT RO ePle

¢ = arctan(wRC()
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Real Part of Expression

1
Vi
J1+ (WRC)?
v, 1 o (pHwt)
J1+ (WRC)?

o) oWt

1
Vi
J1+ (WRC)?

(cos(wt + ¢) + jsin(wt + ¢))

EE40 Summer 2010
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Real Part of Expression

Lm {OF [)

ﬂf’ sin( mln

» Superposition tells us that our output V,, p(t) will just

be the sum of the effect of these two sources
i
Vorp(t) =

J1+ (WRC)?

* Thus, particular solution (forced response) of
original cosine source is just the real part

Vo p(t) =

EE40 Summer 2010 (

(cos(wt + @) + jsin(wt + ¢))

Vi
WRC)? cos(wt +¢) ¢ = arctang(guRC)



Easy Method for AC Circuits

Write ODE
Just as actually writing g
the ODE isn’t necessary Guess 7., = k e/t
for DC sources, we can iyt
avoid the ODE again in .
. 5 Plug into ODE
AC circuits: @
/i jwt :
Impedance Analysis Divide by e/“*. Now t Is gone
Solve for k, (easy)
~
. Uep = Real[k e/®t]
:.mfmr C— ;,fp
jV sin(@, I‘]I




Impedance

VU = Viejwt t > 0
O R 1+ For a complex exponential source:

C — 'L’{.
Vep(t) = vy (t)

_ 1+ jwRC
Rewrlte as:

1/jwC
1/jwC + R

Vep(t) = v (t)

Let Z, = 1/jwC

Looks a lot like...
voltage divider

L
Vep(t) = 7 + R v;(t)
C

Real part gives solution for v; = V;cos(wt)
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Method of Impedance Analysis (without Phasors)

* Replace passive components with equivalent

Impedance, Z, = ]wic Z; =jwlL,Zr =R

 |Replace all sources with complex exponentials

« e.g.v(t) = Acos(wt + 0) = B(t) = Ae/Wt+0)

» Solve using Ohm’s Law of Impedances for

complex exponential sources

- v(t) =1(t)Z

— Just like normal node voltage, but with complex
numbers

—|Real part of node voltage V,(t) gives true output
Va (2)

Lugging these complex exponential functions is algebraically annoying

EE40 Summer 2010 Hug 16




Phasors (not in the book!)

* Definition: A phasor is a complex number
which represents a sinusoid
e f(t) = Acos(wt + 0)
* Three parameters
— A: Magnitude
- w: Frequency
- 0: Phase

* The phasor representation of the sinusoid
above is Ae’?

* In shorthand we write phasor as A46

EE40 Summer 2010 Hug
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Phasors

* |f we have a voltage V(t) = Acos(wt + 0)

* The phasor version of the voltage Is
V=A+6

» If we have a phasor [=az¢, the time
function this phasor represents Is

i(t) = acos(wt + ¢)

EE40 Summer 2010
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Why are phasors useful?

» Sources that look like AetU®*9) result in lots
of AetUY+9) terms in our algebra

* When you apply a sinusoidal source to a
circuit, the amplitude and phase will vary
across components, but it will always still be
qetUw+d)

— Important: w doesn’t change!
» Otherwise we’d need REALLY complex numbers

* Thus, we'll just replace our sources with a
complex number Az¢ and just keep in mind
that this number represents a function
throughout

EE40 Summer 2010 Hug
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Why are phasors useful?

* We know that for complex exponential
sources, we have that:

- 9(t) =1(t)Z
- real|v(t)] = realli(t)Z]

» Phasors are complex numbers V and 1
which represent cosine functions v(t) and

i(t)
* Cosine functions are just the real parts of
complex exponentials

* Thus, in the world of phasors, we can just
rewrite Ohm’s Law of Impedances as:

- V=Iz

EE40 Summer 2010
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Method of Impedance Analysis (with Phasors)

* Replace passive components with equivalent

1

mpedance, Z, = “oC Z; =jwL,Zp =R

* Replace all sources with phasor representation:
e.g.v(t) =Acos(wt+0) = V(t) = AL6
» Solve using Ohm’s Law of Impedances:

-v=1Z
— Just like normal node voltage, but with complex
numbers, attaining voltage phasors V,, V,, ...

— Output V,(¢) is just |V, |cos(wt + 2V,)

* Original sources are implicitly represented by
phasors

EE40 S

— Time Is gone completely from our problem
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Example

v; = V;cos(wt), t >0
I “‘E? 1+ R =10,0000
O “T™ C = 1uF Find i(t) In
V: =5V steady state
w =100
1 .
e /p =10000, Z, = ot = —10000j

Viec0 =540

e V=
e Zoq = 10000 — 10000;

o [ =

EE40 S

mmmmm

5240
10000—-10000j
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Example

v; = V;cos(wt), t >0
I * 1+ R=10,0000
O “T™ C = 1uF Find i(t) In
V: =5V steady state
w = 100

. i_ 520

~ 10000—10000]

« Polar divided by non polar, so convert
bottom to polar

e 10000 — 10000/ = 10000\/54‘7”

EE40 Summer 2010 Hug




Example

v; = V;cos(wt),

I 7 1+ R=10,0000
O T C=1yF
Vi —_ SV
w = 100
. i _ 520

e 10000 — 10000/ = 10000\/54‘7”

¢« So [ =

EE40 S

mmmmm

10000—10000j

520 1 T

— — L —
10000\/547” 20002 4

t >0

Find i(t) In
steady state
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Example

v; = V;cos(wt), t >0
I * 1+ R=10,0000
O “T™ C = 1uF Find i(t) In
V: =5V steady state
w =100
A T
* = o 4 a
+ i(t) = 5o=-—=cos(100¢ + g) in steady state]

EE40 S
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Example

v; = V;cos(wt), t >0
ﬁg + T
I, ==V, 1(t) = cos(100t + —
& T Y= 2000vz < 2
5 . . . | « Current has same

shape as voltage

 Current is 10000v2
times smaller than
source voltage

e Current leads _
source voltage by "

radians or
~_seconds
400

—\/Oltage
m— CUrrent

0 005 01 0415 02 025
t Not to scale Hug 26




 On board

EE40 Summer 2010

Harder Example
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Filters

« Often, we’ll want to build circuits which
react differently based on different signal
frequencies, e.q.

— Splitting audio signals into low and high

portions (for delivery to tweeter and
subwoofer)

— Removing noise of a particular frequency (e.qg.
60 Hz noise or vuvuzela sound)

— Removing signals except those at a certain
frequency

EE40 Summer 2010 Hug 28




Example Filter

v; = V;cos(wt), t >0
I * 1+ R=10,0000
O ‘T  c=1uF  Findvy(t) in
V: =5V steady state
e V. =27 Z¢ = —10%/w
ZCtZR ZR — 105

. 17 . -10%j/w 5

¢ _106j/w+105 !

A~ 1 ~
* Ve = 1+0.1jw Vi

\ } - Transfer Function H(jw)

EE40 Summer 2010 Y Hug 29




Transfer Functions

V ! VI — H(](U)VI

C =~ Tvow
Maps system Input signal to system output

signal
— Plug an input voltage Acos(wt + ¢) into 7,

— Get an output voltage
AlH(jw)] cos(wt + ¢ + LH(ja)))

« Output is scaled and shifted in time
— Scaling and shifting depend on frequency

* Frequency is unchanged (linear system)

Tells you how system will respond to any
frequency, a.k.a. frequency response

30
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Using a Transfer Function

~ 1 ~ A
* Ve = 140.1jw Vi=H({w)V,

* Suppose v;(t) Is 3cos(50t + %)
B A 34% H(j50)| = 1/26

. 1
- H(j50) = = —1.37

» Output phasor V. is just V; x H(j50)
-V, = %4(% ~1.37)

- v.(t) = \/%_6cos(50t + % — 1.37)

EE40 Summer 2010
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Using a Transfer Function (general)

~ 1 ~ A
* Ve = 140.1jw Vi=H({w)V,

+ Suppose v;(t) is 3cos(wt + )

_P, =3," IHGw)| = 1/4/1 + 0.01w?
! ; ¢H(jw) = —ArcTan[0.1w /1]
- H(jw) = :
140.1jw

» Output phasor V. is just V; x H(j50)

3 0.1w
V1+0.01w?2 L(_ — Arclan [ 1 ])

3
V1+0.01w?2

_P, =

0.1w

— 1)

- Ve (1) =

cos(50t + Z — ArcTan|
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Bode Magnitude Plot

1 A PN
1+0.1jw Vi=H({w)V

IH(w)| = 1//1 + 0.01w?

« Magnitude plot is just a plot of |H(jw)| as
a function of w

. V. =

10

g &0}
T T
=04} =
0.2- L
-2

: : : 10 2 ' D ' 2
0 200 400 600 2800 1000 10 10 10

w

s LINEAT SCale Log Scale

Hug
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|H(jw)|

10

Bode Magnitude Plot in Context of Circuit

O

v; = V;cos(wt), t>0
v R = 10,0000
C =1uF
Vi — SV
Ve = Vi=H(Gw)V
Ve=T 0w = HUOY

IH(w)| = 1//1 + 0.01w?

All frequencies below w,. = 10 get

mmmmm

10

.« through pretty well. Above, that
Increasingly attenuated
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Bode Phase Plot

~ 1 ~ A
* Ve = 140.1jw Vi =H({jw)V

¢tH(jw) = —ArcTan[0.1w /1]

» Phase plot is just a plot of2H(jw) as a
function of w

0 : . . . 0
05 1 -0.5}
‘é“ —
= B
£ - =
N N
'1 5 B - _1 5 |
-2 . . . L
0 200 400 600 800 1000 -2

® 107 10" 10° 10"

e LINEAN ScCale Semilog Scale ..,
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Bode Phase Plot in Context of Circuit

O

v; = V;cos(wt), t
v R = 10,0000
C = 1uF
Vi — SV
Ve = Vi=H(Gw)V
¢ = Trogw /= U

l£H(jw) = —ArcTan[0.1w /1]

mmmmm

10

o Move In time with the source,
that, v. gets out of phase

> (

Al frequencies below w, = 10

above
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Frequency vs. Time Domain

* Almost always, our signals consist of
multiple frequencies
« Examples:

— Sound made when you press a buttons on a
phone is two pure sine waves added together
(DTMF)

— Antennas on radio theoretically pick up ALL
frequencies of ALL transmissions

* Using a technigue known as the Fourier
Transform, we can convert any signal into
a sum of sinusoids

— See EE20 for more detalls

EE40 Summer 2010 Hug
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Fourier Transform Example

* |f someone whistles a signal that Is
approximately sin(3000t), and we apply
the Fourier Transform, then:

-4000

1500 — —

1000 — =

500 — =

| |
0 10000 20000 30000
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Fourier Transform Example

* The 1 button on a phone is just v(t) =

. (697 . 1209
sin (— t) + sin(——1t)
2T 2TC

500

400+

300+

20071

100+

L

_

0 500 1000

EE40 Summer 2010
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Fourier

‘ransform Example

 If we apply a fi

ter with the frequency

response on the left to the signal on the right
10-21000 162 o o 00 500JL1 OOOJ L 1500 2000
Then we’ll get:

EE40 Summer 2010




Types of Filters

» Passive Fllters
— Filters with no sources (i.e. jJust R, L, and C)
— Don’t require power source
— Scale to larger signals (no op-amp saturation)
— Cheap

* Active Filters
— Filters with active elements, e.g. op-amps

— More complex transfer function

* No need for inductors (can be large and expensive,
hard to make in integrated circuits)

« More easily tunable
— Response more independent of load (buffering)
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 On board
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Manually Plotting

* In this day and age, It Is rarely necessary
to make our Bode plots manually

 However, learning how to do this will build
your Intuition for what a transfer function

means

« Manual plotting of bode plots is essentially
a set of tricks for manually plotting curves
on a loglog axis

* We will only teach a subset of the full
method (see EE20 for a more thorough

treatment)

EE40 Summer 2010
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Example Filter

v; = V;cos(wt), t >0
I R 1+ R=10,0000
O ‘T  c=1uF  Findvy(t) in
V: =5V steady state

A~ 1 ~

* Ve = 1+0.1jw Vi
A~ 1 ~

* Ve V1+0.01w22ArcTan[0.1w] Vi
A~ 1 A~

%, NI ArcTan|0.1w]| V;

* |ntuitive plot on board
* More thorough algorithm next time
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Why do equivalent Impedances work?

« Components with memory just integrate or

take the derivative of e91t, giving scaled
versions of the same function

— This is unlike forcing functions like t3 or
cos(wt)

— This allows us to divide by the source,
eliminating t from the problem completely

— Left with an algebra problem

— [For those of you who have done integral transforms, this whole process can be

thought of as just using Laplace/Fourier transforms]

EE40 Summer 2010
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