EE40
 Lecture 12 Josh Hug

7/21/2010

Logistical Things

- HW6 due Friday at 5PM (also short)
- Midterm next Wednesday 7/28
- Focus is heavily on HW4, 5, 6, and Labs P1, 4, 5
- Will reuse concepts from HW 1,2,3

Filtering

- For the past couple of lectures, we've discussed using phasors and impedances to solve circuits
- Usually, we've assumed we have some single frequency source, and found the resulting output
- Last time in lecture, we showed that we could apply two different frequencies at one time using superposition
- Each was scaled and shifted by different amounts

Transfer Functions

- $\widehat{V}_{\text {out }}=H(j \omega) \hat{V}_{\text {in }}$, e.g. $\widehat{V}_{\text {out }}=\frac{1}{1+0.1 j w} \hat{V}_{\text {in }}$
- Maps system input signal to system output signal
- Plug an input voltage $A \cos (\omega t+\phi)$ into \widehat{V}_{I}
- Get an output voltage
$A|H(j \omega)| \cos (\omega t+\phi+\angle H(j \omega))$
- Output is scaled and shifted in time
- Scaling and shifting depend on frequency
- Frequency is unchanged (linear system)
- Tells you how system will respond to any frequency, a.k.a. frequency response

Using a Transfer Function

- $\widehat{V}_{\text {out }}=H(j \omega) \hat{V}_{\text {in }}=\frac{1}{1+0.1 j w} \widehat{V}_{\text {in }}$
- Suppose $v_{i n}(t)$ is $3 \cos \left(10 t+\frac{\pi}{2}\right)$
- $\widehat{V}_{I}=3 \angle \frac{\pi}{2}$

$$
|H(j 10)|=1 / \sqrt{2}
$$

$$
-H(j 10)=\frac{1}{1+j}
$$

$$
\angle H(j 10)=-\operatorname{ArcTan}[1 / 1]
$$

$$
=-\pi / 4
$$

- Output phasor $\hat{V}_{\text {out }}$ is just $\hat{V}_{i n} \times H(j 10)$
- $\hat{V}_{\text {out }}=\frac{3}{\sqrt{2}}<\left(\frac{\pi}{2}-\frac{\pi}{4}\right)$
$-v_{\text {out }}(t)=\frac{3}{\sqrt{2}} \cos \left(10 t+\frac{\pi}{2}-\frac{\pi}{4}\right)$

Using a Transfer Function

- $\hat{V}_{\text {out }}=H(j \omega) \hat{V}_{\text {in }}=\frac{1}{1+0.1 j w} \hat{V}_{\text {in }}$
- Suppose $v_{i}(t)$ is $3 \cos \left(50 t+\frac{\pi}{4}\right)$

$$
-\hat{V}_{I}=3 \angle \frac{\pi}{4}
$$

$$
|H(j 50)|=1 / \sqrt{26}
$$

$$
\angle H(j 50)=-\operatorname{ArcTan}[5 / 1]
$$

$$
=-1.37
$$

- Output phasor \hat{V}_{C} is just $\widehat{V}_{I} \times H(j 50)$
$-\hat{V}_{C}=\frac{3}{\sqrt{26}}<\left(\frac{\pi}{4}-1.37\right)$
$-v_{c}(t)=\frac{3}{\sqrt{26}} \cos \left(50 t+\frac{\pi}{4}-1.37\right)$

Transfer Function

- $\hat{V}_{\text {out }}=H(j \omega) \hat{V}_{\text {in }}=|H(j \omega)| \angle H(j \omega) \hat{V}_{\text {in }}$
- For each frequency, different:
- Scaling [magnitude]
- Delay [phase shift]
- It is useful to graphically depict the magnitude and phase of the transfer function

Bode Magnitude Plot

- $\widehat{V}_{C}=\frac{1}{1+0.1 j \omega} \widehat{V}_{I}=H(j \omega) \widehat{V}_{I}$

$$
|H(j \omega)|=1 / \sqrt{1+0.01 \omega^{2}}
$$

- Magnitude plot is just a plot of $|H(j \omega)|$ as a function of ω

${ }_{\text {Eteos sumamar20 }}$ Linear Scale

Log Scale

Bode Magnitude Plot in Context of Circuit

$$
\widehat{V}_{C}=\frac{1}{1+0.1 j w} \widehat{V}_{I}=H(j \omega) \widehat{V}_{I}
$$

$$
|H(j \omega)|=1 / \sqrt{1+0.01 \omega^{2}}
$$

All frequencies below $w_{c}=10$ get through pretty well. Above, that increasingly attenuated

$$
\begin{aligned}
& v_{I}=V_{i} \cos (\omega t), \\
& t>0 \\
& R=10,000 \Omega \\
& C=1 \mu F \\
& V_{i}=5 \mathrm{~V}
\end{aligned}
$$

Bode Phase Plot

- $\widehat{V}_{C}=\frac{1}{1+0.1 j w} \hat{V}_{I}=H(j \omega) \hat{V}_{I}$

$$
\angle H(j \omega)=-\operatorname{ArcTan}[0.1 \omega / 1]
$$

- Phase plot is just a plot of $\angle H(j \omega)$ as a function of ω

EE40 Summer 2010 Lineare

Semilog Scale

Bode Phase Plot in Context of Circuit

$$
\begin{aligned}
& v_{I}=V_{i} \cos (\omega t), \\
& t>0 \\
& R=10,000 \Omega \\
& C=1 \mu F \\
& V_{i}=5 \mathrm{~V}
\end{aligned}
$$

All frequencies below $w_{c}=10$ move in time with the source, above that, v_{c} gets out of phase

Multiple Frequencies

- Real signals are often a combination of a continuum of many frequencies
- Radio antenna input
- Microphone input
- Intuitively:
- Thunder contains a bunch of low frequency sounds
- Boiling kettles contains a bunch of high frequency sounds
- There is a mathematically well defined idea of what it means for a signal to "contain many frequencies"

Time vs. Frequency Domain

- The Fourier Transform takes a function $f(t)$ and converts it into a function $\mathcal{F}(\omega)$
- Every signal can be made out of a sum of an infinite number of sinusoids
- Fourier transform tells you how much of each one to include

$f(t)=\sin (3000 t)$

$$
\mathcal{F}(\omega) \approx \delta(\omega-3000)
$$

Multiple Frequencies

- The " 1 " button on a phone is a combination of a 697 Hz tone and a 1209 Hz tone

$f(t)=\sin (2 \pi 697 t)$ $+\sin (2 \pi 1209 t)$

$$
\begin{aligned}
\mathcal{F}(\omega) & \approx \delta(f-692) \\
& +\delta(f-1209)
\end{aligned}
$$

Multiple Frequencies

- Bill and Ted saying the word "bogus" is a more complex set of frequencies

Filtering Example

- If we apply a filter with the frequency response on the right to the signal on the left

Then we'll get:

More complex filtering

Each frequency individually scaled

Phase Effects

If we shift the phase of the larger sine, we get

Original " 1 button" tone

Magnitude and Phase Demo

- Let's try the ever risky live demo

Bode Plots

- Hopefully l've convinced you that magnitude and phase plots are useful
- Now, the goal will be to draw them straight from the transfer function
- First, some reminders on loglog plots

Loglog Plots

On a loglog plot, $f(x)=A x^{n}$ looks like a straight line w/slope n and y-offset A, because:
$-\log (y)=n \log (x)+\log (A)$

Y-offset - intercept at $x=10^{0}$

$f(x)=10 x^{-1}$

Loglog Plots

- On a loglog plot, $f(x)=x^{n}+k^{n}$ will:
- Be flat for values of $x^{n}<k^{n}$
- Be a straight line of slope n for values of $x^{n}>k^{n}$
- Have a y-offset of $1+k^{n}$

$f(x)=x^{2}+200^{2}$

Loglog Plots

- On a loglog plot, $f(x)=A\left(x^{n}+k^{n}\right)$ will:
- Be flat for values of $x^{n}<k^{n}$
- Be a straight line of slope n for values of $x^{n}>k^{n}$
- Have an y-offset of $A k^{n}$

$$
f(x)=x^{-2}+20^{-2}
$$

$$
f(x)=10\left(x^{-2}+20^{-2}\right)
$$

Manual Bode Plots

- On board, using handout

$2^{\text {nd }}$ Order Filter Example

- Also on board

$2^{\text {nd }}$ order Bode Plots

- Also on board
- This is where we stopped in class

Active filter example

- On board

Magnitude Plot Units

- So far, we've been plotting our Bode plots on where 10^{0} represents a signal getting through perfectly

Bel and Decibel (dB)

- A bel (symbol \mathbf{B}) is a unit of measure of ratios of power levels, i.e. relative power levels.
- $\mathbf{B}=\log _{10}\left(P_{1} / P_{2}\right)$ where P_{1} and P_{2} are power levels.
- The bel is a logarithmic measure
- Zero bels corresponds to a ratio of 1:1
- One bel corresponds to a ratio of 10:1
- Three bels corresponds to a ratio of 1000:1
- The bel is too large for everyday use, so the decibel (dB), equal to 0.1 B , is more commonly used.
$-1 \mathrm{~dB}=10 \log _{10}\left(P_{1} / P_{2}\right)$
- 0 dB corresponds to a ratio of $1: 1$
- 10 dB corresponds to a ratio of $10: 1$
--10 dB corresponds to a ratio of 1:10
- dB are used to measure
- Electric power, filter magnitude

Logarithmic Measure for Power

- To express a power in terms of decibels, one starts by choosing a reference power, $\mathrm{P}_{\text {reference }}$, and writing

$$
\text { Power } P \text { in decibels }=10 \log _{10}\left(P / P_{\text {reference }}\right)
$$

- Exercise:
- Express a power of 50 mW in decibels relative to 1 watt.
$-P(d B)=10 \log _{10}\left(50 \times 10^{-3}\right)=-13 \mathrm{~dB}$
- Use logarithmic scale to express power ratios varying over a large range
dB: $\quad 10 \log \left(\frac{P_{1}}{P_{2}}\right)(\mathrm{dB})$
Note: dB is not a unit for a physical quantity since power ratio is unitless. It is just a notation to remind us we are in the log scale.

Decibels for measuring transfer function magnitude?

- Decibels provide a measure of relative power
- However, we said they also can be used for transfer functions
- The key is in realizing that $P \propto V^{2} \propto I^{2}$
- Thus, if a voltage gets reduced by a factor of 100, we'd say the power ratio between the output and in the input would be
- $10 \log _{10}\left(\frac{V_{\text {out }}^{2}}{V_{\text {in }}^{2}}\right)=10 \log _{10}\left(\left(\frac{V_{\text {out }}}{V_{\text {in }}}\right)^{2}\right)=20 \log _{10}\left(\frac{V_{\text {out }}}{V_{\text {in }}}\right)$

Transfer Function in dB

- Given a transfer function magnitude $|H(j \omega)|$
- We can convert this transfer function into dB by:
- $|H(j \omega)|_{\text {ind } d B}=20 \log _{10}(\mid H(j \omega \mid)$
- There's not that much to this, but it's common in datasheets

Example

$|H(j \omega)|_{i n d B}=20 \log _{10}(\mid H(j \omega \mid)$

