EE40
 Lecture 14 Josh Hug

7/26/2010

Logisticals

- Midterm Wednesday
- Study guide online
- Study room on Monday
- Cory 531, 2:00
- Cooper, Tony, and I will be there 3:00-5:10
- Study room on Tuesday
- Cory 521, 2:30 and on
- Completed homeworks that have not been picked up have been moved into the lab cabinet
- If you have custom Project 2 parts, l've emailed you with details about how to pick them up

Lab

- Lab will be open on Tuesday if you want to work on Project 2 or the Booster Lab or something else
- Not required to start Project 2 tomorrow
- No lab on Wednesday (won't be open)

Power in AC Circuits

- One last thing to discuss for Unit 2 is power in AC circuits
- Let's start by considering the power dissipated in a resistor:

$$
\left.\begin{array}{rl}
P(t) & =v(t) i(t)
\end{array}\right)=10 \cos (50 t) \times \frac{10}{5} \cos (50 t) .
$$

Or graphically

$$
\begin{aligned}
P(t)=v(t) i(t) & =10 \cos (50 t) \times \frac{10}{5} \cos (50 t) \\
& =20 \cos ^{2}(50 t)
\end{aligned}
$$

Average Power

Capacitor example

Find $p(t)$

- $i(t)=10^{-3} \times(-500 \sin (50 t))=$
$-0.5 \sin (50 t)$
- $p(t)=-5 \sin (50 t) \cos (50 t)$

Graphically

Peak Power: 5/2W Min Power: $-5 / 2 W$ Avg Power: 0W

$$
p(t)=-5 \sin (50 t) \cos (50 t)
$$

Is there some easier way of calculating power?

- Like maybe with... phasors?

- Phasors are:

$$
\begin{aligned}
& -\hat{V}=10 \angle 0 \\
& -\hat{I}=0.5 \angle \frac{\pi}{2}
\end{aligned}
$$

- How about $\hat{P}=\hat{V} \hat{I}$?

Is there some easier way of measuring power?

- Phasors are:

$$
p(t)=5 \cos (50 t) \cos \left(50 t+\frac{\pi}{2}\right)
$$

$-\hat{V}=10 \angle 0$
$-\hat{I}=0.5 \angle \frac{\pi}{2}$

- Does $\hat{P}=\hat{V} I ̂ ?$

$$
-\hat{V} \hat{I}=5 \angle \frac{\pi}{2}
$$

A. Yes, $\hat{V} \hat{I}$ matches $\mathrm{p}(\mathrm{t})$
B. No, wrong magnitude
C. No, wrong phase
D. No, wrong frequency

It gets worse

- For the resistor, there is no phasor which represents the power (never goes negative)

Average Power

- Tracking the time function of power with some sort of phasor-like quantity is annoying
- Frequency changes
- Sometimes have an offset (e.g. with resistor)
- Often, the thing we care about is the average power, useful for e.g.
- Battery drain
- Heat dissipation
- Useful to define a measure of "average" other than the handwavy thing we did before
- Average power given periodic power is:

$$
\bar{p}=\int_{0}^{T} \frac{1}{T} p(t) d t
$$

T is time for 1 period

Power in terms of phasors

- We've seen that we cannot use phasors to find an expression for $p(t)$
- Average power given periodic power is:

$$
\bar{p}=\int_{0}^{T} \frac{1}{T} p(t) d t
$$

T is time for 1 period

- We'll use this definition of average power to derive an expression for average power in terms of phasors

Average Power

- $\overline{p(t)}=\overline{v(t) i(t)}$
- Note: $\bar{a} \bar{b} \neq \overline{a b}$

$$
- \text { e.g. } a=5 \cos (t), b=4 \cos (t)
$$

- Average of each cosine is zero
- Average of their product is 10
- Our goal will be to get the average power $\overline{p(t)}$ from phasors \hat{V} and \hat{I}
- We'll utilize $\overline{\operatorname{Re}[a] \operatorname{Re}[b]}=\frac{1}{2} \operatorname{Re}\left[a b^{*}\right]$
- * denotes complex conjugate
- See extra slides for proof of this identity

Power from Phasors

- $\overline{\operatorname{Re}[a] \operatorname{Re}[b]}=\frac{1}{2} \operatorname{Re}\left[a b^{*}\right]$
- $\overline{p(t)}=\overline{v(t) i(t)}$
- $v(t)=\operatorname{Re}\left[V_{o} e^{j(\omega t+\theta)}\right]$
- $i(t)=\operatorname{Re}\left[I_{o} e^{j(\omega t+\phi)}\right]$
- $\left.\overline{p(t)}=\overline{\operatorname{Re}\left[\operatorname{Re}\left[V_{o} e^{j(\omega t+\theta)}\right]\right] \operatorname{Re}\left[\operatorname{Re}\left[I_{o} e^{j(\omega t+\phi)}\right]\right.}\right]$
$=\frac{1}{2} \operatorname{Re}\left[V_{o} e^{j(\omega t+\theta)} I_{o} e^{-j(\omega t+\phi)}\right]$
$=\frac{1}{2} \operatorname{Re}\left[V_{o} I_{o} e^{j(\theta-\phi)}\right]$
$=\frac{1}{2} \operatorname{Re}\left[\hat{V} \hat{I}^{*}\right]$

Power from Phasors

- Thus, given a voltage phasor \hat{V} and a current phasor \hat{I}, the average power absorbed is

$$
p(t)=\frac{1}{2} \operatorname{Re}\left[\hat{V} \hat{I}^{*}\right]
$$

Capacitor Example

$10 \cos (50 t)$

- Phasors are:
$-\widehat{V}(t)=10 \angle 0$
$-\hat{I}(t)=0.5 \angle \frac{\pi}{2}$
- $\overline{p(t)}=\frac{1}{2} \operatorname{Re}\left[10 \angle 0 \times 0.5 \angle-\frac{\pi}{2}\right]$

$$
=\frac{1}{2} \operatorname{Re}\left[5 \angle-\frac{\pi}{2}\right]=0
$$

Resistor Example

$10 \cos (50 t)$

$$
p(t)=\frac{1}{2} \operatorname{Re}\left[\hat{V} \hat{I}^{*}\right]
$$

- $\widehat{V}=10 \angle 0$

Find avg power across resistor

- $\hat{I}=2 \angle 0$
- $\overline{(p(t))}=\frac{1}{2} \operatorname{Re}[20]=10$
A. 0 Watts
B. 10 Watts
C. 20 Watts

Resistor Example

$10 \cos (50 t)$

- $Z_{e q}=5-20 j$

Find avg power from source

- $\widehat{V}=10 \angle 0$
- $\hat{I}=\hat{V} / Z_{e q}$
- $\overline{(p(t))}=\frac{1}{2} \operatorname{Re}\left[\hat{V} \hat{I}^{*}=\frac{1}{2} \operatorname{Re}\left[\frac{\left[\hat{V} \hat{V}^{*}\right.}{Z_{e q}^{*}}\right]=\frac{1}{2} \operatorname{Re}\left[\frac{100}{5+20 j}\right]\right.$

$$
=\frac{1}{2} \operatorname{Re}\left[\frac{100}{20.6155 \angle 1.3258}\right]=\frac{1}{2} \operatorname{Re}[1.17-4.7 j]=0.58 \mathrm{~W}
$$

Reactive Power

- So if power dissipated is $\frac{1}{2} \operatorname{Re}\left[\hat{V} \hat{I}^{*}\right]$, then what is $\frac{1}{2} \operatorname{Im}\left[\hat{V} \hat{I}^{*}\right]$?
- Imaginary part is called "reactive power"
- Physical intuition is that it's power that you put into an element with memory, but which the element eventually gives back

Capacitor Reactive Power Example

$10 \cos (50 t)$

$$
\begin{array}{r}
\perp 1 m F \quad i(t)=-0.5 \cos \left(50 t+\frac{\pi}{2}\right) \\
p(t)=5 \cos (50 t) \cos \left(50 t+\frac{\pi}{2}\right)
\end{array}
$$

- Phasors are:
$-\hat{V}(t)=10 \angle 0$
$-\hat{I}(t)=0.5 \angle \frac{\pi}{2}$
- $\overline{p(t)}=\frac{1}{2} \operatorname{Im}\left[10 \angle 0 \times 0.5 \angle-\frac{\pi}{2}\right]$

$$
=\frac{1}{2} \operatorname{Im}\left[5 \angle-\frac{\pi}{2}\right]=-\frac{5}{2} W
$$

Graphically

Like a frictionless car with perfect regenerative brakes, starting and stopping again and again and again

Note on Reactive Power

- "Providing" reactive power and "consuming" reactive power are physically the same thing
- Usually we say capacitors "provide" reactive power, which comes from our definition, whereas inductors "consume" reactive power

$$
\mathrm{p}_{\text {reactive }}=\frac{1}{2} \operatorname{Im}\left[\hat{V} \hat{I}^{*}\right] ?
$$

- As you'll see on HW7, capacitors and inductors can be chosen to get rid of reactive power

And that rounds out Unit 2

- We've covered all that needs to be covered on capacitors and inductors, so it's time to (continue) moving on to the next big thing

Back to Unit 3 - Integrated Circuits

- Last Friday, we started talking about integrated circuits
- Analog integrated circuits
- Behave mostly like our discrete circuits in lab, can reuse old analysis
- Digital integrated circuits
- We haven't discussed discrete digital circuits, so in order to understand digital ICs, we will first have to do a bunch of new definitions

Digital Representations of Logical Functions

- Digital signals offer an easy way to perform logical functions, using Boolean algebra
- Example: Hot tub controller with the following algorithm
- Turn on heating element if
- A: Temperature is less than desired (T < Tset)
- and B : The motor is on
- and C: The hot tub key is turned to "on"
- OR
- T: Test heater button is pressed

Hot Tub Controller Example

- Example: Hot tub controller with the following algorithm
- Turn on heating element if
- A: Temperature is less than desired (T < Tset)
- and B : The motor is on
- and C: The hot tub key is turned to "on"
- OR
- T : Test heater button is pressed

Hot Tub Controller Example

- Example: Hot tub controller with the following algorithm
- A: Temperature is less than desired ($\mathrm{T}<\mathrm{Tset}$)
-B : The motor is on
- C: The hot tub key is turned to "on"
- T : Test heater button is pressed
- Or more briefly: $\mathrm{ON}=(\mathrm{A}$ and B and C$)$ or T

Boolean Algebra and Truth Tables

- We'll next formalize some useful mathematical expressions for dealing with logical functions
- These will be useful in understanding the function of digital circuits

Boolean Logic Functions

- Example: ON=(A and B and C) or T
- Boolean logic functions are like algebraic equations
- Domain of variables is 0 and 1
- Operations are "AND", "OR", and "NOT"
- In contrast to our usual algebra on real numbers
- Domain of variables is the real numbers
- Operations are addition, multiplication, exponentiation, etc

Examples

- In normal algebra, we can have
$-3+5=8$
$-A+B=C$
- In Boolean algebra, we'll have
- 1 and $0=0$
- A and $B=C$

Have you seen boolean algebra before?

- A. Yes
- B. No

Formal Definitions

- "not" is a unary operator (takes 1 argument)
- Returns 1 if its argument is 0 , and 0 if its argument is 1 , e.g.
- not $0=1$
- There exist many shorthand ways of writing the not operation e.g.

$$
\begin{gathered}
\overline{0}=1 \\
0^{\prime}=1 \\
\neg 0=1
\end{gathered}
$$

- I will use bar notation for consistency with the book.

Formal Definitions

- "and" is a binary operator [takes 2 arguments] which returns 1 if both if its arguments are 1 , and 0 otherwise
- Many ways to write "A and B" in shorthand:

$$
\begin{gathered}
A B \\
A \cdot B \\
A \wedge B
\end{gathered}
$$

\mathbf{A}	B	\mathbf{Z}
$\mathbf{0}$	0	$\mathbf{0}$
$\mathbf{0}$	1	$\mathbf{0}$
$\mathbf{1}$	0	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Formal Definitions

- "or" is a binary operator [takes 2 arguments] which returns 0 if either of its arguments are 1 , and 0 otherwise
- Common ways to write "A and B" in shorthand:

$$
\begin{aligned}
& A+B \\
& A \vee B
\end{aligned}
$$

A	B	Z
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Algebra and Truth Tables

- Just as in normal algebra, boolean algebra operations can be applied recursively, giving rise to complex boolean functions
- $\mathrm{Z}=\mathrm{AB}+\mathrm{C}$
- Any boolean function can be represented by one of these tables, called a truth table

A	B	C
0	0	0
0		
0	0	1
1		
0	1	0
0	0	
0	1	1
1	1	
1	0	0
1	0	1
1	1	0
1	1	
1	1	1

Boolean Algebra

- Originally developed by George Boole as a way to write logical propositions as equations
- Now, a very handy tool for specification and simplification of logical systems

Simplification Example

- Z: Shine the bat signal
- C : Crime in progress
- B: Want to meet Batman
- T : Test bat signal
- $Z=C+\bar{C} B+\bar{C} \bar{B} T$
- Simpler expression:
$-Z=C+B+T$

C	B	T	Z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Logic Simplification

- In CS61C and optionally CS150, you will learn a more thorough systematic way to simplify logic expression
- All digital arithmetic can be expressed in terms of logical functions
- Logic simplification is crucial to making such functions efficient
- You will also learn how to make logical adders, multipliers, and all the other good stuff inside of CPUs

Quick Arithmetic-as-Logic Example

- Assuming we have boolean input variables $A_{1}, A_{2}, B_{2}, B_{2}$ and boolean output variables Z_{1}, Z_{2}
- Let's say that each variable represent one digit of a binary number, we have 16 possibilities

Logic Gates

- Logic gates are the schematic equivalent of our boolean logic functions
- Example, the AND gate:

$$
F=A \cdot B
$$

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

- If we're thinking about real circuits, this is a device where the output voltage is high if and only if both of the input voltages are high

Logic Functions, Symbols, \& Notation

NAME

"NOT"
SYMBOL

NOTATION

$$
F=\bar{A}
$$

TRUTH
TABLE

A	F
0	1
1	0

$F=A+B$

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

$F=A \cdot B$

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

Multi Input Gates

- AND and OR gates can also have many inputs, e.g.

$F=A B C$
- Can also define new gates which are composites of basic boolean operations, for example NAND:

$$
F=\overline{A B C}
$$

Logic Gates

- Can think of logic gates as a technology independent way of representing logical circuits
- The exact voltages that we'll get will depend on what types of components we use to implement our gates
- Useful when designing logical systems
- Better to think in terms of logical operations instead of circuit elements and all the accompanying messy math

Hot Tub Controller Example

- Example: Hot tub controller with the following algorithm
- A: Temperature is less than desired ($\mathrm{T}<\mathrm{Tset}$)
- B : The motor is on
- C: The hot tub key is turned to "on"
- T : Test heater button is pressed
- Or more briefly: $\mathrm{ON}=(\mathrm{A}$ and B and C$)$ or T

Hot Tub Controller Example

- Example: Hot tub controller with the following algorithm
- A: Temperature is less than desired ($\mathrm{T}<\mathrm{Tset}$)
- B : The motor is on
- C: The hot tub key is turned to "on"
- T : Test heater button is pressed
- Or more briefly: $\mathrm{ON}=(\mathrm{A}$ and B and C$)$ or T

How does this all relate to circuits?

- A digital circuit is simply any circuit where every voltage in the circuit is one of two values
- $V_{\text {low }}$ (typically ground) will represent boolean 0
- $V_{\text {high }}$ (in modern CPUs, approximately 1V, though you can set this on your computer) will represent boolean 1
- In truth, of course, values will vary continuously, but entire design is conceptualized as simply 1s and 0s

The "Static Discipline"

- We can think of the whole circuit as obeying a contract to always provide output voltages $V_{\text {low }}$ and $V_{\text {high }}$ at all outputs as long as the inputs follow these same rules
- Up to the circuit designer to ensure this specification is met
- In truth, voltages may be a little lower or higher than these contractual values
- However, as long as the output values are close enough, the deviations are unimportant

Many Possible Ways to Realize Logic Gates

- There are many ways to build logic gates, for example, we can build gates with opamps
$Z=f(A, B)$

- Far from optimal
- 5 resistors
- Dozens of transistors
A. AND gate
B. OR gate
C. NOT gate
D. Something else

Switches as Gates

- Example: Hot tub controller
- ON=(A and B and C) or T
- Switches are the most natural implementation for logic gates

Relays, Tubes, and Transistors as Switches

- Electromechnical relays are ways to make a controllable switch:
- Zuse's Z3 computer (1941) was entirely electromechnical
- Later vacuum tubes adopted:
- Colossus (1943) - 1500 tubes
- ENIAC (1946) - 17,468 tubes
- Then transistors:
- IBM 608 was first commercially available (1957), 3000 transistors

Electromechanical Relay

- Inductor generates a magnetic field that physically pulls a switch down
- When current stops flowing through inductor, a spring resets the switch to the off position

- Three Terminals:
+ : Plus
- : Minus

C : Control

Electromechnical Relay Summary

- "Switchiness" due to physically manipulation of a metal connector using a magnetic field
- Very large
- Moving parts
- No longer widely used in computational systems as logic gates
- Occasional use in failsafe systems

Vacuum Tube

- Inside the glass, there is a hard vacuum
- Current cannot flow
- If you apply a current to the minus terminal (filament), it gets hot
- This creates a gas of electrons that can travel to the positively charged plate from the hot filament
- When control port is used, grid becomes charged
- Acts to increase or decrease ability of current to flow from - to +

(Wikipedia)

Vacuum Tube Demo

Vacuum Tube Summary

- "Switchiness" is due to a charged cage which can block the flow of free electrons from a central electron emitter and a receiving plate
- No moving parts
- Inherently power inefficient due to requirement for hot filament to release electrons
- No longer used in computational systems
- Still used in:
- CRTs
- Very high power applications
- Audio amplification (due to nicer saturation behavior relative to transistors)

Field Effect Transistor

${ }^{(\text {Drain })}+$
(Gate)

- P is (effectively) a high resistance block of material, so current can barely flow from + to -
- The n region is a reservoir of extra electrons (we will discuss the role of the n region later)
- When C is "on", i.e. V_{c} is relatively positive, then electrons from inside the P region collect at bottom of insulator, forming a "channel"

Field Effect Transistor

(Drain) +

- When the channel is present, then effective resistance of P region dramatically decreases
- Thus:
- When C is "off", switch is open
- When C is "on", switch is closed

Field Effect Transistor

- If we apply a positive voltage to the plus side - Current begins to flow from + to -
- Channel on the + side is weakened
- If we applied a different positive voltage to both sides?

Field Effect Transistor Summary

- "Switchiness" is due to a controlling voltage which induces a channel of free electrons
- Extremely easy to make in unbelievable numbers
- Ubiquitous in all computational technology everywhere

MOSFET Model

- Schematically, we represent the MOSFET as a three terminal device
- Can represent all the voltages and currents between terminals as shown to the right

MOSFET Model

- What do you expect i_{G} to be?

S Model of the MOSFET

- The simplest model basically says that the MOSFET is:
- Open for $V_{G S}<V_{T}$
- Closed for $V_{G S}>V_{T}$

Control terminal

$v_{G S} \geq V_{T}$

Building a NAND gate using MOSFETs

- Consider the circuit to the right where V_{S}
- On the board, we'll show that $C=\overline{A B}$
- Demonstration also on page 294 of the book

That's it for today

- Next time, we'll discuss:
- Building arbitrarily complex logic functions
- Sequential logic
- The resistive model of a MOSFET
- Until then, study

