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Logisticals 

• Midterm Wednesday 

– Study guide online 

– Study room on Monday 
• Cory 531, 2:00 

– Cooper, Tony, and I will be there 3:00-5:10 

– Study room on Tuesday 
• Cory 521, 2:30 and on 

• Completed homeworks that have not been 
picked up have been moved into the lab 
cabinet 

• If you have custom Project 2 parts, I’ve 
emailed you with details about how to pick 
them up 
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Lab 

• Lab will be open on Tuesday if you want to 

work on Project 2 or the Booster Lab or 

something else 

– Not required to start Project 2 tomorrow 

• No lab on Wednesday (won’t be open) 
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Power in AC Circuits 

• One last thing to discuss for Unit 2 is 

power in AC circuits 

• Let’s start by considering the power 

dissipated in a resistor: 

 

 

 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 
5Ω 

𝑃 𝑡 = 𝑣 𝑡 𝑖(𝑡) = 10 cos 50𝑡 ×
10

5
cos(50𝑡) 

= 20 cos2 50𝑡  
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Or graphically 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 
5Ω 

𝑃 𝑡 = 𝑣 𝑡 𝑖(𝑡) = 10 cos 50𝑡 ×
10

5
cos(50𝑡) 

= 20 cos2 50𝑡  
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Average Power 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 
5Ω 

Peak Power:  
Min Power:  

Avg Power:  

20W 

0W 

10W 
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Capacitor example 

• 𝑖 𝑡 = 10−3 × −500 sin 50𝑡 =
− 0.5 sin 50𝑡  

• 𝑝 𝑡 = −5 sin 50𝑡 cos(50𝑡) 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 

1𝑚𝐹 

Find p(t) 
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Graphically 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 

1𝑚𝐹 

𝑝 𝑡 = −5 sin 50𝑡 cos(50𝑡) 

Peak Power:  
Min Power:  

Avg Power:  

5/2𝑊 

0W 

−5/2𝑊 
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Is there some easier way of calculating power? 

• Like maybe with… phasors? 

 

 

 

• Phasors are: 

– 𝑉 = 10∠0 

– 𝐼 = 0.5∠
𝜋

2
 

• How about 𝑃 = 𝑉 𝐼 ? 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 

1𝑚𝐹 𝑖 𝑡 = 0.5 cos 50𝑡 +
𝜋

2
 

𝑝 𝑡 = 5cos(50𝑡) cos(50𝑡 +
𝜋

2
) 
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Is there some easier way of measuring power? 

 

 

 

• Phasors are: 

– 𝑉 = 10∠0 

– 𝐼 = 0.5∠
𝜋

2
 

• Does 𝑃 = 𝑉 𝐼 ? 

– 𝑉 𝐼 = 5∠
𝜋

2
 

𝑝 𝑡 = 5cos(50𝑡) cos(50𝑡 +
𝜋

2
) 

A. Yes, 𝑉 𝐼  matches p(t) 

B. No, wrong magnitude 

C. No, wrong phase 

D. No, wrong frequency 
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It gets worse 

• For the resistor, there is no phasor which 

represents the power (never goes 

negative) 
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Average Power 

• Tracking the time function of power with 
some sort of phasor-like quantity is annoying 
– Frequency changes 

– Sometimes have an offset (e.g. with resistor) 

• Often, the thing we care about is the average 
power, useful for e.g. 
– Battery drain 

– Heat dissipation 

• Useful to define a measure of “average” other 
than the handwavy thing we did before 

• Average power given periodic power is: 

𝑝 =  
1

𝑇
𝑝 𝑡 𝑑𝑡

𝑇

0

 T is time for 1 period 



13 EE40 Summer 2010 Hug 

Power in terms of phasors 

• We’ve seen that we cannot use phasors to 

find an expression for p(t) 

• Average power given periodic power is: 

 

 

• We’ll use this definition of average power 

to derive an expression for average power 

in terms of phasors 

𝑝 =  
1

𝑇
𝑝 𝑡 𝑑𝑡

𝑇

0

 T is time for 1 period 
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Average Power 

• 𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡  

• Note: 𝑎 𝑏 ≠ 𝑎𝑏 

– e.g. 𝑎 = 5 cos 𝑡 , 𝑏 = 4 cos 𝑡  
• Average of each cosine is  

• Average of their product is 

• Our goal will be to get the average power 
𝑝 𝑡  from phasors 𝑉  and 𝐼  

• We’ll utilize 𝑅𝑒 𝑎 𝑅𝑒 𝑏 =
1

2
𝑅𝑒[𝑎𝑏∗] 

– * denotes complex conjugate 

– See extra slides for proof of this identity 

zero 

10 
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Power from Phasors 

• 𝑅𝑒 𝑎 𝑅𝑒 𝑏 =
1

2
𝑅𝑒 𝑎𝑏∗  

• 𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡  

• 𝑣 𝑡 = 𝑅𝑒 𝑉𝑜𝑒𝑗 𝜔𝑡+𝜃  

• 𝑖 𝑡 = 𝑅𝑒 𝐼𝑜𝑒𝑗 𝜔𝑡+𝜙  

• 𝑝 𝑡 = 𝑅𝑒 𝑅𝑒 𝑉𝑜𝑒𝑗 𝜔𝑡+𝜃 𝑅𝑒 𝑅𝑒 𝐼𝑜𝑒𝑗 𝜔𝑡+𝜙  

    =
1

2
𝑅𝑒 𝑉𝑜𝑒𝑗 𝜔𝑡+𝜃 𝐼𝑜𝑒−𝑗 𝜔𝑡+𝜙  

    =
1

2
𝑅𝑒[𝑉𝑜𝐼𝑜𝑒𝑗 𝜃−𝜙 ] 

    =
1

2
𝑅𝑒[𝑉 𝐼 ∗] 
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Power from Phasors 

• Thus, given a voltage phasor 𝑉  and a 

current phasor 𝐼 , the average power 

absorbed is 

𝑝 𝑡 =
1

2
𝑅𝑒 𝑉 𝐼 ∗  
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Capacitor Example 

 

 

 

• Phasors are: 

– 𝑉 𝑡 = 10∠0 

– 𝐼 𝑡 = 0.5∠
𝜋

2
 

• 𝑝 𝑡 =
1

2
𝑅𝑒 10∠0 × 0.5∠ −

𝜋

2
 

    =
1

2
𝑅𝑒 5∠ −

𝜋

2
= 0 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 

1𝑚𝐹 𝑖 𝑡 = −0.5 cos 50𝑡 +
𝜋

2
 

𝑝 𝑡 = 5cos(50𝑡) cos(50𝑡 +
𝜋

2
) 



18 EE40 Summer 2010 Hug 

Resistor Example 

 

 

 

 

• 𝑉 = 10∠0 

• 𝐼 = 2∠0 

• 𝑝 𝑡 =
1

2
𝑅𝑒 20 = 10 

  

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 
5Ω 

Find avg power across resistor 

𝑝 𝑡 =
1

2
𝑅𝑒 𝑉 𝐼 ∗  

A. 0 Watts 

B. 10 Watts 

C. 20 Watts 
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Resistor Example 

 

 

 

 

• 𝑍𝑒𝑞 = 5 − 20𝑗 

• 𝑉 = 10∠0 

• 𝐼 = 𝑉 /𝑍𝑒𝑞 

• 𝑝 𝑡 =
1

2
𝑅𝑒 𝑉 𝐼 ∗  

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 
5Ω 

1𝑚𝐹 

Find avg power from source 

=
1

2
𝑅𝑒 1.17 − 4.7𝑗  = 0.58𝑊 

=
1

2
𝑅𝑒

𝑉 𝑉 ∗

𝑍𝑒𝑞
∗  =

1

2
𝑅𝑒

100

5 + 20𝑗
 

       

=
1

2
𝑅𝑒

100

20.6155∠1.3258
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Reactive Power 

• So if power dissipated is 
1

2
𝑅𝑒 𝑉 𝐼 ∗ , then 

what is 
1

2
𝐼𝑚 𝑉 𝐼 ∗ ? 

• Imaginary part is called “reactive power” 

• Physical intuition is that it’s power that you 

put into an element with memory, but 

which the element eventually gives back   
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Capacitor Reactive Power Example 

 

 

 

• Phasors are: 

– 𝑉 𝑡 = 10∠0 

– 𝐼 𝑡 = 0.5∠
𝜋

2
 

• 𝑝 𝑡 =
1

2
𝐼𝑚 10∠0 × 0.5∠ −

𝜋

2
 

  

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 

1𝑚𝐹 𝑖 𝑡 = −0.5 cos 50𝑡 +
𝜋

2
 

𝑝 𝑡 = 5cos(50𝑡) cos(50𝑡 +
𝜋

2
) 

 =
1

2
𝐼𝑚 5∠ −

𝜋

2
= −

5

2
𝑊 
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Graphically 

 
+ 
 - 

10𝑐𝑜𝑠(50𝑡) 

1𝑚𝐹 
Peak Power:  
Min Power:  

Avg Power:  

5/2𝑊 

0W 

−5/2𝑊 

Avg Reactive Power: -5/2W 

Like a frictionless car with perfect regenerative brakes, 
starting and stopping again and again and again 
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Note on Reactive Power 

• “Providing” reactive power and 
“consuming” reactive power are physically 
the same thing 

• Usually we say capacitors “provide” 
reactive power, which comes from our 
definition, whereas inductors “consume” 
reactive power 

  preactive =
1

2
𝐼𝑚 𝑉 𝐼 ∗ ? 

• As you’ll see on HW7, capacitors and 
inductors can be chosen to get rid of 
reactive power 
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And that rounds out Unit 2 

• We’ve covered all that needs to be 

covered on capacitors and inductors, so 

it’s time to (continue) moving on to the 

next big thing 
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Back to Unit 3 – Integrated Circuits 

• Last Friday, we started talking about 

integrated circuits 

• Analog integrated circuits 

– Behave mostly like our discrete circuits in lab, 

can reuse old analysis 

• Digital integrated circuits 

– We haven’t discussed discrete digital circuits, 

so in order to understand digital ICs, we will 

first have to do a bunch of new definitions 



26 EE40 Summer 2010 Hug 

Digital Representations of Logical Functions 

• Digital signals offer an easy way to 

perform logical functions, using Boolean 

algebra 

• Example: Hot tub controller with the 

following algorithm 

– Turn on heating element if 

• A: Temperature is less than desired (T < Tset) 

• and B: The motor is on 

• and C: The hot tub key is turned to “on” 

– OR 

• T: Test heater button is pressed 
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110V Heater 

C B A 

T 

Hot Tub Controller Example 

• Example: Hot tub controller with the 

following algorithm 

– Turn on heating element if 

• A: Temperature is less than desired (T < Tset) 

• and B: The motor is on 

• and C: The hot tub key is turned to “on” 

– OR 

• T: Test heater button is pressed 
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110V Heater 

C B A 

T 

Hot Tub Controller Example 

• Example: Hot tub controller with the 

following algorithm 

– A: Temperature is less than desired (T < Tset) 

– B: The motor is on 

– C: The hot tub key is turned to “on” 

– T: Test heater button is pressed 

• Or more briefly: ON=(A and B and C) or T 
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Boolean Algebra and Truth Tables 

• We’ll next formalize some useful 

mathematical expressions for dealing with 

logical functions 

• These will be useful in understanding the 

function of digital circuits 
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Boolean Logic Functions 

• Example: ON=(A and B and C) or T 

• Boolean logic functions are like algebraic 

equations 

– Domain of variables is 0 and 1 

– Operations are “AND”, “OR”, and “NOT” 

• In contrast to our usual algebra on real 

numbers 

– Domain of variables is the real numbers 

– Operations are addition, multiplication, 

exponentiation, etc 
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Examples 

• In normal algebra, we can have 

– 3+5=8 

– A+B=C 

• In Boolean algebra, we’ll have 

– 1 and 0=0 

– A and B=C 
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Have you seen boolean algebra before? 

• A. Yes 

• B. No 
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Formal Definitions 

• “not” is a unary operator (takes 1 argument) 

• Returns 1 if its argument is 0, and 0 if its 

argument is 1, e.g. 

– not 0=1 

• There exist many shorthand ways of writing 

the not operation e.g. 

0 = 1 
0′ = 1 

¬0 = 1 

• I will use bar notation for consistency with the 

book. 
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Formal Definitions 

• “and” is a binary operator [takes 2 

arguments] which returns 1 if both if its 

arguments are 1, and 0 otherwise 

• Many ways to write “A and B” in 

shorthand: 

𝐴𝐵 
𝐴 ∙ 𝐵 

𝐴 ∧ 𝐵 

 

• As a table, if Z = 𝐴𝐵, then: 

A B Z 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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Formal Definitions 

• “or” is a binary operator [takes 2 

arguments] which returns 0 if either of its 

arguments are 1, and 0 otherwise 

• Common ways to write “A and B” in 

shorthand: 

𝐴 + 𝐵 
𝐴 ∨ 𝐵 

 

• As a table, if Z = 𝐴 + 𝐵, then: 

A B Z 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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Boolean Algebra and Truth Tables 

• Just as in normal algebra, boolean algebra 

operations can be applied recursively, 

giving rise to complex                     

boolean functions 

• Z=AB+C 

A B C Z 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

• Any boolean function can 

be represented by one of 

these tables, called a 

truth table 
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Boolean Algebra 

• Originally developed by George Boole as 

a way to write logical propositions as 

equations 

• Now, a very handy tool for specification 

and simplification of logical systems 
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Simplification Example 

• 𝑍: Shine the bat signal 

• 𝐶: Crime in progress 

• 𝐵:Want to meet Batman 

• 𝑇: Test bat signal 

• 𝑍 = 𝐶 + 𝐶 𝐵 + 𝐶 𝐵 𝑇 

 

• Simpler expression: 

– 𝑍 = 𝐶 + 𝐵 + 𝑇 

C B T Z 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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Logic Simplification 

• In CS61C and optionally CS150, you will 

learn a more thorough systematic way to 

simplify logic expression 

• All digital arithmetic can be expressed in 

terms of logical functions 

• Logic simplification is crucial to making 

such functions efficient 

• You will also learn how to make logical 

adders, multipliers, and all the other good 

stuff inside of CPUs 
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Quick Arithmetic-as-Logic Example 

• Assuming we have boolean input variables 

𝐴1, 𝐴2, 𝐵2, 𝐵2 and boolean output variables 

𝑍1, 𝑍2 

• Let’s say that each variable represent one 

digit of a binary number, we have 16 

possibilities 
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Logic Gates 

• Logic gates are the schematic equivalent 

of our boolean logic functions 

• Example, the AND gate: 

 

 

 

• If we’re thinking about real circuits, this is 

a device where the output voltage is high if 

and only if both of the input voltages are 

high 

 

 

 

 

 

F A 

B 

A B F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

F = A•B 
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Logic Functions, Symbols, & Notation 

“NOT” F = A 

        TRUTH 

NAME       SYMBOL    NOTATION TABLE 

F A 

A B F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

“OR” F = A+B F 
A 

B 

A F 

0 1 

1 0 

A B F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

“AND” F = A•B F A 

B 
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Multi Input Gates 

• AND and OR gates can also have many 

inputs, e.g. 

 

 

 

• Can also define new gates which are 

composites of basic boolean operations, 

for example NAND:  

F = ABC 
A 
B 
C 

F 

𝐹 = 𝐴𝐵𝐶 
A 
B 
C 

F 
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Logic Gates 

• Can think of logic gates as a technology 

independent way of representing logical 

circuits 

• The exact voltages that we’ll get will 

depend on what types of components we 

use to implement our gates 

• Useful when designing logical systems 

– Better to think in terms of logical operations 

instead of circuit elements and all the 

accompanying messy math 



45 EE40 Summer 2010 Hug 

110V Heater 

C B A 

T 

Hot Tub Controller Example 

• Example: Hot tub controller with the 

following algorithm 

– A: Temperature is less than desired (T < Tset) 

– B: The motor is on 

– C: The hot tub key is turned to “on” 

– T: Test heater button is pressed 

• Or more briefly: ON=(A and B and C) or T 
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110V Heater 

Hot Tub Controller Example 

• Example: Hot tub controller with the 

following algorithm 

– A: Temperature is less than desired (T < Tset) 

– B: The motor is on 

– C: The hot tub key is turned to “on” 

– T: Test heater button is pressed 

• Or more briefly: ON=(A and B and C) or T 

A 
B 
C 

T 
ON 



47 EE40 Summer 2010 Hug 

How does this all relate to circuits? 

• A digital circuit is simply any circuit where 

every voltage in the circuit is one of two 

values 

– 𝑉𝑙𝑜𝑤 (typically ground) will represent boolean 0 

– 𝑉ℎ𝑖𝑔ℎ (in modern CPUs, approximately 1V, 

though you can set this on your computer) will 

represent boolean 1 

• In truth, of course, values will vary 

continuously, but entire design is 

conceptualized as simply 1s and 0s 
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The “Static Discipline” 

• We can think of the whole circuit as obeying 
a contract to always provide output voltages 
𝑉𝑙𝑜𝑤 and 𝑉ℎ𝑖𝑔ℎ at all outputs as long as the 
inputs follow these same rules 

• Up to the circuit designer to ensure this 
specification is met 

• In truth, voltages may be a little lower or 
higher than these contractual values 

• However, as long as the output values are 
close enough, the deviations are 
unimportant 
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Many Possible Ways to Realize Logic Gates 

• There are many ways to build logic gates, 

for example, we can build gates with op-

amps 

 

 

 

 

• Far from optimal 

– 5 resistors 

– Dozens of transistors 

 

 

• Is this a(n): 

A. AND gate 

B. OR gate 

C. NOT gate 

D. Something else 

A 

B 

Z 

1Ω 

1Ω 

1Ω 

1Ω 

1Ω 

5V 

-5V -5V 

5V 

𝑍 = 𝑓(𝐴, 𝐵) 
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110V Heater 

C B A 

T 

Switches as Gates 

• Example: Hot tub controller 

• ON=(A and B and C) or T 

• Switches are the most natural 

implementation for logic gates 

110V Heater 
A 
B 
C 

T 
ON 
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Relays, Tubes, and Transistors as Switches 

• Electromechnical relays are ways to make 

a controllable switch: 

– Zuse’s Z3 computer (1941) was entirely 

electromechnical 

• Later vacuum tubes adopted: 

– Colossus (1943) – 1500 tubes 

– ENIAC (1946) – 17,468 tubes 

• Then transistors: 

– IBM 608 was first commercially available 

(1957), 3000 transistors 
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Electromechanical Relay 

• Inductor generates a magnetic field that 

physically pulls a switch down 

• When current stops flowing through 

inductor, a spring resets the switch to the 

off position 

+ – + – 

C C 

• Three 

Terminals: 

+ : Plus 

– : Minus 

C : Control 
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Electromechnical Relay Summary 

• “Switchiness” due to physically 

manipulation of a metal connector using a 

magnetic field 

• Very large 

• Moving parts 

• No longer widely used in computational 

systems as logic gates 

– Occasional use in failsafe systems 
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Vacuum Tube 

• Inside the glass, there is a 
hard vacuum 
– Current cannot flow 

• If you apply a current to 
the minus terminal 
(filament), it gets hot 

• This creates a gas of 
electrons that can travel to 
the positively charged 
plate from the hot filament 

• When control port is used, 
grid becomes charged 
– Acts to increase or 

decrease ability of current 
to flow from – to + 

(Wikipedia) 

+ 

– 

C 
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Vacuum Tube Demo 
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Vacuum Tube Summary 

• “Switchiness” is due to a charged cage which 
can block the flow of free electrons from a 
central electron emitter and a receiving plate 

• No moving parts 

• Inherently power inefficient due to 
requirement for hot filament to release 
electrons 

• No longer used in computational systems 

• Still used in: 
– CRTs 

– Very high power applications 

– Audio amplification (due to nicer saturation 
behavior relative to transistors) 
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Field Effect Transistor 

+ – 
C 

• P is (effectively) a high resistance block of 
material, so current can barely flow from + to – 

• The n region is a reservoir of extra electrons (we 
will discuss the role of the n region later) 

• When C is “on”, i.e. 𝑉𝑐 is relatively positive, then 
electrons from inside the P region collect at bottom 
of insulator, forming a “channel” 

 

 

 

- - - - - - - - - - - - -  

(Drain) (Source) 

(Gate)  +
  - 
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Field Effect Transistor 

+ – 
C 

• When the channel is present, then effective 

resistance of P region dramatically decreases 

• Thus: 

– When C is “off”, switch is open 

– When C is “on”, switch is closed 

 

 

 

- - - - - - - - - - - - -  

(Drain) (Source) 

(Gate)  +
  - 



59 EE40 Summer 2010 Hug 

Field Effect Transistor 

+ – 
C 

• If we apply a positive voltage to the plus side 

– Current begins to flow from + to – 

– Channel on the + side is weakened 

• If we applied a different positive voltage to 

both sides? 

        - - - - - -  

(Drain) (Source) 

(Gate) 

 
+ 
 - 

 +
  - 
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Field Effect Transistor Summary 

• “Switchiness” is due to a controlling 

voltage which induces a channel of free 

electrons 

• Extremely easy to make in unbelievable 

numbers 

• Ubiquitous in all computational technology 

everywhere 
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MOSFET Model 

• Schematically, we 

represent the 

MOSFET as a three 

terminal device 

• Can represent all the 

voltages and currents 

between terminals as 

shown to the right 
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MOSFET Model 

• What do you expect 𝑖𝐺 

to be? 

 

 

+ – 

C 

(Drain) (Source) 

(Gate) 
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S Model of the MOSFET 

• The simplest model 
basically says that the 
MOSFET is: 

– Open for 𝑉𝐺𝑆 < 𝑉𝑇 

– Closed for 𝑉𝐺𝑆 > 𝑉𝑇 
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Building a NAND gate using MOSFETs 

• Consider the circuit 

to the right where 𝑉𝑆 

• On the board, we’ll 

show that 𝐶 = 𝐴𝐵 

• Demonstration also 

on page 294 of the 

book 
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That’s it for today 

• Next time, we’ll discuss: 

– Building arbitrarily complex logic functions 

– Sequential logic 

– The resistive model of a MOSFET 

• Until then, study 


