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Logistics 

• HW7 due Tuesday 

• HW8 will be due next Friday 

• Homeworks will be less mathematically 

intense starting with the second half of 

HW7 

• Details on Project 2 demo and Mini-

Midterm 3 details on Monday 

 



3 EE40 Summer 2010 Hug 

Midterm 2 

• I can show you your midterm 2 grade, but 

problem 5 needs regrading [most people 

will get 3 to 6 more points] 

• At the moment, mean is 102 and standard 

deviation is 24 

• First midterm was mean 103, standard 

deviation 20 

• Some oochness will happen here 
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Logic Gates and Static Discipline 

• (On the board before we started) 
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iClicker Warmup 

• We’re going to have a ton of iClicker 

questions today 

• A quick warmup. Have you played 

Starcraft 2? 

A. Yes 

B. No 

C. Starwhat? 
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Field Effect Transistor 

+ – 
C 

• P is (effectively) a high resistance block of 
material, so current can barely flow from + to – 

• The n region is a reservoir of extra electrons (we 
will discuss the role of the n region later) 

• When C is “on”, i.e. 𝑉𝑐 is relatively positive, then 
electrons from inside the P region collect at bottom 
of insulator, forming a “channel” 

 

 

 

- - - - - - - - - - - - -  

(Drain) (Source) 

(Gate)  +
  - 
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Field Effect Transistor 

+ – 
C 

• When the channel is present, then effective 

resistance of P region dramatically decreases 

• Thus: 

– When C is “off”, switch is open 

– When C is “on”, switch is closed 

 

 

 

- - - - - - - - - - - - -  

(Drain) (Source) 

(Gate)  +
  - 
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Field Effect Transistor 

+ – 
C 

• If we apply a positive voltage to the plus side 

– Current begins to flow from + to – 

– Channel on the + side is weakened 

• If we applied a different positive voltage to 

both sides? 

        - - - - - -  

(Drain) (Source) 

(Gate) 

 
+ 
 - 

 +
  - 
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Field Effect Transistor Summary 

• “Switchiness” is due to a controlling 

voltage which induces a channel of free 

electrons 

• Extremely easy to make in unbelievable 

numbers 

• Ubiquitous in all computational technology 

everywhere 
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Discussion Today 

• In discussion today, we’ll go over the 

physics of MOSFETs for those of you who 

are curious 

• Time permitting, we’ll discuss at a future 

date in class as well (so yeah, it will be 

slightly redundant) 
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MOSFET Model 

• Schematically, we 

represent the 

MOSFET as a three 

terminal device 

• Can represent all the 

voltages and currents 

between terminals as 

shown to the right 
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MOSFET Model 

• What do you expect 𝑖𝐺 

to be? 

 

 

+ – 

C 

(Drain) (Source) 

(Gate) 
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S Model of the MOSFET 

• The simplest model 
basically says that the 
MOSFET is: 

– Open for 𝑉𝐺𝑆 < 𝑉𝑇 

– Closed for 𝑉𝐺𝑆 > 𝑉𝑇 
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Building a NAND gate using MOSFETs 

• Consider the circuit 

to the right where 𝑉𝑆 

• On your worksheet, 

we’ll show that 

𝐶 = 𝐴𝐵 

• Demonstration also 

on page 294 of the 

book 

A 

B 

C 
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MOSFET modeling 

• MOSFET models vary greatly in 

complexity 

• For example, an “ON” MOSFET has some 

effective resistance (not an ideal switch) 

• We will progressively refine our model of 

the MOSFET 

– Will add capacitance later today 

– If we have time in the next 2 weeks, we will 

also talk about using MOSFETs as analog 

amplifiers which will necessitate an even 

better model 
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SR Model of the MOSFET 

𝑖𝐷𝑆 =
𝑉𝐷𝑆

𝑅𝑂𝑁
, 𝑉𝐺𝑆 ≥ 𝑉𝑇   

           𝑉𝐺𝑆< 𝑉𝑇 = 0, 

[Has nothing to do with SR flip-flop] 
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NAND with the SR Model 

• What is 𝑉𝐶 when 
either of the inputs is 
low? 

• Draw the equivalent 
circuit when both 
inputs are high. What 
is 𝑉𝐶? 
A. 𝑉𝑆 

B. 0 

C. 𝑉𝑆/𝑅𝐿 

D. 𝑉𝑆
2𝑅𝑂𝑁

𝑅𝐿+2𝑅𝑂𝑁
 

E. 𝑉𝑆
𝑅𝐿

𝑅𝐿+2𝑅𝑂𝑁
 

Q2 
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NAND with the SR Model 

• Assume static 
discipline requires 
0 < 𝑉𝑂𝐿 < 0.5V and 
4.5V < 𝑉𝑂𝐻 < 5𝑉 

• Assume 𝑅𝐿 is 100𝑘Ω 

• Choose a 𝑉𝑆 such that 
the static discipline for 
𝑉𝑂𝐻 is met: 

 A. 5𝑉 

 B. 4.5𝑉 

 C. 0.5𝑉 

 D. 0𝑉 

OHigh: 𝑉𝐶 = 𝑉𝑆 

OLow: 𝑉𝐶 = 𝑉𝑆
2𝑅𝑂𝑁

𝑅𝐿+2𝑅𝑂𝑁
 

Q3 
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NAND with the SR Model 

• Assume static 

discipline requires 

0 < 𝑉𝑂𝐿 < 0.5V and 

4.5V < 𝑉𝑂𝐻 < 5𝑉 

• Assume 𝑅𝐿 = 10𝑘Ω 

and 𝑉𝑠 = 5𝑉 

• Choose an 𝑅𝑂𝑁 and 

𝑅𝐿 such that 𝑉𝑂𝐿 

meets the static 

discipline 

OHigh: 𝑉𝐶 = 𝑉𝑆 

OLow: 𝑉𝐶 = 𝑉𝑆
2𝑅𝑂𝑁

𝑅𝐿+2𝑅𝑂𝑁
 

Note: 𝑹𝑳 is usually called a “Pull-up resistor” Q4 
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Another SR Model Example 

• Replace the left 
MOSFET with the 
equivalent circuit 
when A is high 

• What is 𝑉𝐺𝑆 on the 
right NMOS if A is 
high? 

A. 5𝑉 

B. 5
1

1+9.5
 

C. 5
1

1+11
 

D. 0 

9.5kΩ 11kΩ 

5𝑉 5𝑉 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

Q5 
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Another SR Model Example 

• When A is on, 

𝑉𝐺𝑆,𝑟𝑖𝑔𝑕𝑡 = 5
1

1+9.5
=

0.476𝑉 

• What is 𝑉𝑂𝑈𝑇 when A 

is high? 

A. 5𝑉 

B. 5
1

1+9.5
 

C. 5
1

1+11
 

D. 0 

9.5kΩ 11kΩ 

5𝑉 5𝑉 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

Q6 
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The power of digital circuits 

9.5kΩ 11kΩ 

5𝑉 5𝑉 

10kΩ 

5𝑉 • At each stage, 

circuit restores the 

signal 

• Can think of each 

MOSFET as 

diverting the 5V or 

0V power supply 

into the next gate 

• Tolerant to noise 

and manufacturing 

error 

0.48V 5V 0.45V 
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The power of digital circuits 

9.5kΩ 11kΩ 

5𝑉 5𝑉 

10kΩ 

5𝑉 • How much noise 

could we tolerate 

on the input of the 

2nd gate? 

• On the input of 

the 3rd gate? 
0.48V 5V 0.45V 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 
OUT A 

G1 G2 
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The power of digital circuits (literally) 

• Like all circuits, digital circuits consume 

power 

• Amount of power will be dependent on 

state of our MOSFET switches 
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Power Example 

• What is the power 

dissipation when 

A=1, B=1, C=0? 

• First, draw circuit 

with ON MOSFETS 

replaced with 

resistors 

• Then, calculate 𝑃𝑠 

 

5𝑉 

5𝑉 

10kΩ 

10kΩ 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

Q7 
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Power Example 

• In general, power 

consumption will 

depend on which 

inputs are high and 

which are low 

• “Worst case 

analysis” is when we 

pick the set of inputs 

which consumes the 

most power 

 

5𝑉 

5𝑉 

10kΩ 

10kΩ 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 



27 EE40 Summer 2010 Hug 

Static Power 

• Using only NMOS to implement our gates 

will result in a gate which constantly eats 

up power 

– If you wire such a gate up on a breadboard, it 

will hum along using power all day 

• Later today, we will see a technique called 

CMOS to avoid this static power 

dissipation 

• But first, let’s discuss delay 
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The SRC Model of an NMOS Transistor 

• So far, our NMOS implementation of logic 

gates allow for instantaneous switching 

• In real life, of course, an NMOS 

implementation will take some non-zero 

time to switch 

Simulation by Wade Barnes 

Green: 

Inverter 

Input 

 

Red: 

Inverter 

Output 
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The SRC Model 

• The SRC Model is 

almost identical to 

the SR model, except 

that each gate node 

has a capacitance 

• Like SR model: open 

when OFF and 

resistive when ON 

• Note that now 𝑖𝐺 is 

non-zero! 
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The SRC Model 

• Useful for modeling: 

– Gate delay: Takes 

time to charge up 

– Dynamic power: 

𝑖𝐺 ≠ 0 
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SRC Model 

• Consider our familiar 

pair of inverters 

• We’re going to focus 

on the behavior of 

our left inverter 

• Let’s assume that 

both MOSFETs have 

a gate capacitance of 

1𝑝𝐹 or 10−12𝐹 

9.5kΩ 11kΩ 

5𝑉 5𝑉 
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SRC Model of our 2 Inverters 

9.5kΩ 11kΩ 

5𝑉 5𝑉 

• We decide to ignore the function of the 
gate on the right, keeping it in mind only 
because we know we’ll have to charge it 

9.5kΩ 

5𝑉 

1𝑝𝐹 

𝑉𝐺1 
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Analysis of SRC Model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• When the gate voltage 𝑉𝐼𝑁 

has been less than 𝑉𝑇 (i.e. 

the gate capacitor is not 

charged) for a long time, 

what is 𝑉𝐺1? 

A.  0𝑉 

B.  5𝑉 

C.  5
1

1+9.5
 𝑉 

D.  5
1

1+9.5 10−12 𝑉 

 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

𝑉𝐺1 

Q8 
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Analysis of SRC Model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• Now assume 𝑉𝑖𝑛 has been 

low for a long time and 

thus 𝑉𝐺1 = 5𝑉 

• If the logic gate upstream 

of 𝑉𝑖𝑛 rises above 1V, the 

SRC model of the left 

MOSFET says it should 

instantly switch to “ON” 

• Draw the equivalent circuit 

on the MOSFET 

worksheet 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

𝑉𝐺1 

Q9 
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Analysis of SRC Model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• If 𝑉𝐺1 = 5𝑉, and the 1𝑘Ω 

resistor suddenly appears 

at t=0 

• What is 𝑉𝐺1(∞)? 

A.  0𝑉 

B.  5𝑉 

C.  5
1

1+9.5
 𝑉 

D.  5
1

1+9.5 10−12 𝑉 

 

 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 

Q10 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• What is the time constant 

for the discharge of 𝑉𝐺1? 

A.  10−12 

B.  10−12 × 1000 

C.  10−12 × (9500 + 1200) 

D.  10−12 × (9500 ∥ 1200) 

E.  2 × 10−12 × (9500 +
1200) 

 

 
𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 

Q11 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• Since 𝑉𝐺1 0 = 5𝑉, 

𝑉𝐺1 ∞ = 0.476𝑉, and 

𝜏 ≈ 1𝑛𝑠, then: 

• 𝑉𝐺1 𝑡 =
5 − 0.476 𝑒−𝑡/𝜏 + 0.476 

• How long will it take for 

the next inverter in the 

chain to turn on? 

 

 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 

𝜏 = 10−12 × 9500 ∥ 1200 = 1.06 × 10−9 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• 5 − 0.476 𝑒−𝑡𝑓𝑎𝑙𝑙/𝜏 +
0.476 = 1 

• −𝜏 ln 0.1158 = 𝑡𝑓𝑎𝑙𝑙   

• So 𝑡𝑓𝑎𝑙𝑙 = 2.2𝑛𝑠 

• We call this the “Fall 

Time”: gives time for 𝑉𝐺1 

to fall from 5V to 1V 

 

 
𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 
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Fall Time 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• 5 − 0.476 𝑒−𝑡/𝜏 + 0.476 = 1 

• 𝜏 ≈ 10−9 

• Gives: 𝑡𝑓𝑎𝑙𝑙 = 2.2𝑛𝑠 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• How do we find the Rise 

Time? 

• Have to replace by new 

equivalent circuit where: 

– Capacitor is initially 

discharged (0.476 V) 

– Switch is open 

 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• How do we find the Rise 

Time? 

• Have to replace by new 

equivalent circuit where: 

– Capacitor is initially 

discharged (0.476 V) 

– Switch is open 

• 𝑉𝐺1 = 0.476 − 5 𝑒−𝑡/𝜏 + 5 

• 𝜏 = 10−12 × 9500 ≈ 10𝑛𝑠 𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 

𝑉𝐺1 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• 𝑉𝐺1 = 0.476 − 5 𝑒−𝑡/𝜏 + 5 

𝜏 = 10−12 × 9500 ≈ 10𝑛𝑠 

• 0.476 − 5 𝑒−𝑡𝑟𝑖𝑠𝑒/𝜏 + 5 = 1 

 

−𝜏 ln 0.884 = 𝑡𝑟𝑖𝑠𝑒  

 

• 𝑡𝑟𝑖𝑠𝑒 = 1.2𝑛𝑠 

 
𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 

𝑉𝐺1 
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Timing Analysis of the SRC model 

9.5kΩ 

5𝑉 

1𝑝𝐹 

• 𝑉𝐺1 = 0.476 − 5 𝑒−𝑡/𝜏 + 5 

• 𝜏 ≈ 10−12𝑠 

• 𝑡𝑟𝑖𝑠𝑒 = 1.2𝑛𝑠 

 

𝑅𝑜𝑛 = 1𝑘Ω 

𝑉𝑇 = 1𝑉 

 

1𝑝𝐹 

𝑉𝐺1 
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Propagation Delay 

• Rise and Fall Time are also called 

“Propagation Delays” 

 

 

 

 

 

• Gives “delay time” between when the logical 

input changes and the logical output changes 

• Book calls them 𝑡𝑝𝑑,1→0 and 𝑡𝑝𝑑,0→1 
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Reminder of Where We Started 

9.5kΩ 11kΩ 

5𝑉 5𝑉 

9.5kΩ 

5𝑉 

1𝑝𝐹 

𝑉𝐺1 

OUT 

A 
G1 

Wanted to study gate delay of: So used SRC model: 

Which implements: 

Giving delay of LEFT gate! 
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Using Propagation Delays 

OUT A G1 

• 𝑡𝑟𝑖𝑠𝑒 = 𝑡𝑝𝑑,0→1 = 1.2𝑛𝑠 

• 𝑡𝑓𝑎𝑙𝑙 = 𝑡𝑝𝑑,1→0 = 2.2𝑛𝑠 

• Suppose A has been zero a long time and 

switches to 1 

– How long does it take for 𝐺1 to go to 0? 

– How long does it take for 𝑂𝑈𝑇 to go to 1? 

 

 

 
0 1 0 1 0 1 
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Propagation Delays 

OUT A G1 

• In general 𝑡𝑝𝑑,0→1 is not equal to 𝑡𝑝𝑑,1→0 

• Thus, we usually just take the maximum 
and call that the propagation delay of the 
gate 

• 𝑡𝑝𝑑 = 2.2𝑛𝑠 

• Means that no matter what input you give 
the gate, output will be correct within 2.2𝑛𝑠 
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Bonus Question for CS61C Veterans 

OUT A G1 

• Assume now that the rise and fall times of 

both gates are 2.2𝑛𝑠 

• Assume that we have a register driving “A” 

and a register receiving “OUT” 

• Assume the registers operate instantaneously 

• What is the minimum clock time if this very 

boring buffer is our longest pipeline stage? 
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• This is where we stopped 
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Power in the SRC Model 

• Static power in the SRC Model is exactly as 
SR Model, compare: 

 

 

 

 

 

• We’re also interested in the dynamic power 
while capacitance is charging 

• Algebra is a bit involved. We’ll outline the 
concept. Book has a very thorough treatment 
in sections 11.1 through 11.3 
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Dynamic Power in NMOS Circuits 

• When our inverter is going from low to 

high, we have the circuit on the left: 

• In general, looks like circuit on the right: 

9.5kΩ 

5𝑉 

1𝑝𝐹 

1𝑝𝐹 

𝑉𝐺1 
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Dynamic Power in NMOS Circuits 

• When our inverter is going from high to 

low, we have the circuit on the left: 

• In general, looks like circuit on the right: 

9.5kΩ 

5𝑉 

1𝑝𝐹 

1𝑝𝐹 1𝑘Ω 

𝑉𝐺1 
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Dynamic Power 

𝑉𝑖𝑛 = 0 

𝑉𝑖𝑛 = 1 

• Worst case is that 

inverter is driven by 

a sequence of 1s 

and 0s 

– Circuit constantly 

switching behavior 

– Gate capacitor 

constantly charging 

and discharging 

Discharges down towards 𝑉𝑠
𝑅𝑂𝑁

𝑅𝑂𝑁+𝑅𝐿
 

Charges up towards 𝑉𝑆 
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Problem Setup 

𝑉𝑖𝑛 = 0 

𝑉𝑖𝑛 = 1 

• 𝑉𝑖𝑛 is 

– 0 for some time 𝑇1  

• Dissipates some 

energy 𝑤1 

– 1 for some time 𝑇2 

• Dissipates some 

energy 𝑤2 

• 𝑃 =
𝑤1+𝑤2

𝑇1+𝑇2
 

• See 11.1 through 

11.3 for derivation 
Discharges down towards 𝑉𝑠

𝑅𝑂𝑁

𝑅𝑂𝑁+𝑅𝐿
 

Charges up towards 𝑉𝑆 
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Solution  
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Avoiding Static Power Loss 

• Next we will talk about CMOS, which 

stands for Complementary MOS 

• So far, all of our transistors have been 

NMOS transistors, where they are on if 

𝑉𝐺𝑆 ≥ 𝑉𝑇 

• Next, we will discuss a new type of FET 

transistor called a PMOS 

• Only difference is that they will be on when 

𝑉𝐺𝑆 ≤ 𝑉𝑇  
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PMOS Transistor 

• Drawn with a bubble at the input: 

• Usually drawn with source on top 
and drain on bottom (for reasons 
that will become clear) 

• Just as before, have ON and 
OFF states, now on when 
𝑉𝐺𝑆 ≤ 𝑉𝑇 
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Anything logical we can do with NMOS… 

• …we can do with PMOS 

• Example, we can build an inverter, try it for 

60 seconds or so on the worksheet using 

a PMOS, 5V source, ground, and resistor 

• Assume input signal is 0V or 5V and 

𝑉𝑇 = −1𝑉 

A 

OUT 

RL 

5V 

G 

S 

D 
Here: 𝑅𝐿 acts as a 
pulldown resistor 

Q13 
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Analysis of PMOS Logic 

• We could go through and repeat 

everything we did for NMOS, but it would 

be almost exactly the same thing 

• Instead, we’re now going to use NMOS 

and PMOS in a clever way 
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CMOS Inverter 

• Two complementary 

implementations of 

the same logic 

function 

• When 𝑉𝐼𝑁 is high: 

– Path to ground is 

closed 

– Path to 𝑉𝑆 is open 
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CMOS Inverter 

• When 𝑉𝐼𝑁 is high: 

– Path to ground is 

closed 

– Path to 𝑉𝑆 is open 

• Huge resistance on 

open PMOS acts as 

a pull-up resistor 
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CMOS Inverter 

• When 𝑉𝐼𝑁 is low: 

– Path to ground is 

open 

– Path to 𝑉𝑆 is closed 

• Huge resistance on 

open NMOS acts as 

a pull-down resistor 
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Static Power in CMOS 

• What is the static 
power consumed 
by this CMOS 
inverter when 
IN=0? 

• When IN=1? 

• In reality, as gate 
insulator gets 
thinner, there is a 
significant 
leakage 
component 

IN=0 IN=1 
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Dynamic Power in CMOS 

• Load power: Since 

our CMOS gates 

will be driving 

capacitive loads, 

they will still draw 

power when 

switching (since 

power is provided 

to the load) 
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Dynamic Power in CMOS 

• Leakage Power: 

Unless you’re 

careful about 

timing, both 

MOSFETs could be 

closed at the same 

time 

– Power flows directly 

from 𝑉𝑆 to ground 

• Even if timing is perfect, both transistors will 
at some point be “weakly on” – subthreshold 
leakage 
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Dynamic Power 

• These days, subthreshold leakage is a big 

issue 

– Thresholds have been reduced to decrease 

switching times 

– Reduced thresholds mean leakier MOSFETs 

• In this class, we won’t analyze this case, 

but be aware that in the world of digital 

integrated circuits, it plays a big role 
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CMOS 

• CMOS Summary: 

– No need for a pull-up or pull-down resistor 

• Though you can avoid this even with purely NMOS 

logic (see HW7) 

– Greatly reduced static power dissipation vs. 

our simple NMOS only logic 

• In reality, thin gate oxides lead to some static non-

zero 𝑖𝐺, so static power is not zero 

– Dynamic power is still hugely significant 

– Uses twice the number of transistors as our 

simple purely NMOS logic 
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Implementation of Complex Gates Using NMOS and CMOS 

• In class today, we’ve discussed analysis of 

NMOS and CMOS circuits 

• Haven’t discussed how to design them 

• Luckily, it is easy 
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That’s it for today 
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Extra Slides 
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SR Model of the PMOS MOSFET 

𝑖𝐷𝑆 =
𝑉𝐷𝑆

𝑅𝑂𝑁𝑝
, 𝑉𝐺𝑆 ≤ 𝑉𝑇   

           𝑉𝐺𝑆> 𝑉𝑇 = 0, 

No, has nothing to do with SR flip-flop 


