EE40 Lecture 15 Josh Hug

7/30/2010

Logistics

- HW7 due Tuesday
- HW8 will be due next Friday
- Homeworks will be less mathematically intense starting with the second half of HW7
- Details on Project 2 demo and Mini-Midterm 3 details on Monday

Midterm 2

- I can show you your midterm 2 grade, but problem 5 needs regrading [most people will get 3 to 6 more points]
- At the moment, mean is 102 and standard deviation is 24
- First midterm was mean 103, standard deviation 20
- Some oochness will happen here

Logic Gates and Static Discipline

• (On the board before we started)

iClicker Warmup

- We're going to have a ton of iClicker questions today
- A quick warmup. Have you played Starcraft 2?
 - A. Yes
 - B. No
 - C. Starwhat?

Field Effect Transistor

- P is (effectively) a high resistance block of material, so current can barely flow from + to -
- The n region is a reservoir of extra electrons (we will discuss the role of the n region later)
- When C is "on", i.e. V_c is relatively positive, then electrons from inside the P region collect at bottom of insulator, forming a "channel"

Field Effect Transistor

- When the channel is present, then effective resistance of P region dramatically decreases
- Thus:
 - When C is "off", switch is open
 - When C is "on", switch is closed

Field Effect Transistor

- If we apply a positive voltage to the plus side
 - Current begins to flow from + to –
 - Channel on the + side is weakened
- If we applied a different positive voltage to both sides?

Field Effect Transistor Summary

- "Switchiness" is due to a controlling voltage which induces a channel of free electrons
- Extremely easy to make in unbelievable numbers
- Ubiquitous in all computational technology everywhere

Discussion Today

- In discussion today, we'll go over the physics of MOSFETs for those of you who are curious
- Time permitting, we'll discuss at a future date in class as well (so yeah, it will be slightly redundant)

MOSFET Model

- Schematically, we represent the MOSFET as a three terminal device
- Can represent all the voltages and currents between terminals as shown to the right

MOSFET Model

S Model of the MOSFET

- The simplest model basically says that the MOSFET is:
 - Open for $V_{GS} < V_T$ - Closed for $V_{GS} > V_T$

Building a NAND gate using MOSFETs

- Consider the circuit to the right where V_S
- On your worksheet, we'll show that $C = \overline{AB}$
- Demonstration also on page 294 of the book

MOSFET modeling

- MOSFET models vary greatly in complexity
- For example, an "ON" MOSFET has some effective resistance (not an ideal switch)
- We will progressively refine our model of the MOSFET
 - Will add capacitance later today
 - If we have time in the next 2 weeks, we will also talk about using MOSFETs as analog amplifiers which will necessitate an even better model

SR Model of the MOSFET

[Has nothing to do with SR flip-flop]_{Hug}

NAND with the SR Model

- What is V_C when either of the inputs is low?
- Draw the equivalent circuit when both inputs are high. What is V_C ?
 - A. V_S
 - *B.* 0
 - C. V_S/R_L D. $V_S \frac{2R_{ON}}{R_L + 2R_{ON}}$ E. $V_S \frac{R_L}{R_L + 2R_{ON}}$

17

NAND with the SR Model

- Assume static discipline requires $0 < V_{OL} < 0.5V$ and $4.5V < V_{OH} < 5V$
- Assume R_L is $100k\Omega$
- Choose a V_S such that the static discipline for V_{OH} is met:

$$O_{\text{High}}: V_C = V_S$$
$$O_{\text{Low}}: V_C = V_S \frac{2R_{ON}}{R_L + 2R_{ON}}$$

NAND with the SR Model

- Assume static discipline requires $0 < V_{OL} < 0.5V$ and $4.5V < V_{OH} < 5V$
- Assume $R_L = 10k\Omega$ and Vs = 5V
- Choose an R_{ON} and R_L such that V_{OL} meets the static discipline

Note: R_L is usually called a "Pull-up resistor"

$$O_{\text{High}}: V_C = V_S$$
$$O_{\text{Low}}: V_C = V_S \frac{2R_{ON}}{R_L + 2R_{ON}}$$

Another SR Model Example

- Replace the left MOSFET with the equivalent circuit when A is high
- What is V_{GS} on the right NMOS if A is high?

B.
$$5\frac{1}{1+9.5}$$

C. $5\frac{1}{1+11}$
D. 0

$$R_{on} = 1k\Omega$$
$$V_T = 1V$$

20

Another SR Model Example

- When A is on, $V_{GS,right} = 5 \frac{1}{1+9.5} = 0.476V$
- What is V_{OUT} when A is high?

B.
$$5\frac{1}{1+9.5}$$

C. $5\frac{1}{1+11}$
D. 0

$$\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$$

21

The power of digital circuits

- At each stage, circuit restores the signal
- Can think of each MOSFET as diverting the 5V or 0V power supply into the next gate
- Tolerant to noise and manufacturing error

The power of digital circuits

- How much noise could we tolerate on the input of the 2nd gate?
- On the input of the 3rd gate?

 $R_{on} = 1k\Omega$ $V_T = 1V$

The power of digital circuits (literally)

- Like all circuits, digital circuits consume power
- Amount of power will be dependent on state of our MOSFET switches

Power Example

- What is the power dissipation when A=1, B=1, C=0?
- First, draw circuit with ON MOSFETS replaced with resistors
- Then, calculate P_s

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

25

Power Example

- In general, power consumption will depend on which inputs are high and which are low
- "Worst case analysis" is when we pick the set of inputs which consumes the most power

 $R_{on} = 1k\Omega$ $V_T = 1V$

Static Power

- Using only NMOS to implement our gates will result in a gate which constantly eats up power
 - If you wire such a gate up on a breadboard, it will hum along using power all day
- Later today, we will see a technique called CMOS to avoid this static power dissipation
- But first, let's discuss delay

The SRC Model of an NMOS Transistor

- So far, our NMOS implementation of logic gates allow for instantaneous switching
- In real life, of course, an NMOS implementation will take some non-zero time to switch

28

Hua

EE40 Summer 2010

The SRC Model

- The SRC Model is almost identical to the SR model, except that each gate node has a capacitance
- Like SR model: open when OFF and resistive when ON
- Note that now i_G is non-zero!

The SRC Model

- Useful for modeling:
 Gate delay: Takes time to charge up
 - Dynamic power: $i_G \neq 0$

SRC Model

- Consider our familiar pair of inverters
- We're going to focus on the behavior of our left inverter
- Let's assume that both MOSFETs have a gate capacitance of 1pF or $10^{-12}F$

SRC Model of our 2 Inverters

• We decide to ignore the function of the gate on the right, keeping it in mind only because we know we'll have to charge it

Analysis of SRC Model

- When the gate voltage V_{IN} has been less than V_T (i.e. the gate capacitor is not charged) for a long time, what is V_{G1}?
 - A. 0V
 - B. 5*V*

C.
$$5\frac{1}{1+9.5}V$$

D. $5\frac{1}{(1+9.5)10^{-12}}V$

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

33

Analysis of SRC Model

- Now assume V_{in} has been low for a long time and thus $V_{G1} = 5V$
- If the logic gate upstream of V_{in} rises above 1V, the SRC model of the left MOSFET says it should instantly switch to "ON"
- Draw the equivalent circuit on the MOSFET worksheet

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

34

Analysis of SRC Model

- If $V_{G1} = 5V$, and the $1k\Omega$ resistor suddenly appears at t=0
- What is $V_{G1}(\infty)$?
 - A. 0*V*
 - B. 5V

C.
$$5\frac{1}{1+9.5}V$$

D. $5\frac{1}{(1+9.5)10^{-12}}V$

 $\begin{array}{l} R_{on} = 1 k \Omega \\ V_T = 1 V \end{array}$

- What is the time constant for the discharge of V_{G1} ?
 - A. 10⁻¹²

B.
$$10^{-12} \times 1000$$

- C. $10^{-12} \times (9500 + 1200)$
- D. $10^{-12} \times (9500 \parallel 1200)$
- E. $2 \times 10^{-12} \times (9500 + 1200)$

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

Q11 _{Hug} 36

- Since $V_{G1}(0) = 5V$, $V_{G1}(\infty) = 0.476V$, and $\tau \approx 1ns$, then:
- $V_{G1}(t) =$ (5 - 0.476) $e^{-t/\tau}$ + 0.476
- How long will it take for the next inverter in the chain to turn on?

- $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$
- $\tau = 10^{-12} \times (9500 \parallel 1200) = 1.06 \times 10^{-9}$

- $(5 0.476)e^{-t_{fall}/\tau} + 0.476 = 1$
- $-\tau \ln(0.1158) = t_{fall}$
- So $t_{fall} = 2.2ns$
- We call this the "Fall Time": gives time for V_{G1} to fall from 5V to 1V

$$\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$$

Fall Time

- $(5 0.476)e^{-t/\tau} + 0.476 = 1$ • $\tau \approx 10^{-9}$
- Gives: $t_{fall} = 2.2ns$

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

- How do we find the Rise Time?
- Have to replace by new equivalent circuit where:
 - Capacitor is initially discharged (0.476 V)
 - Switch is open

 $\begin{array}{l} R_{on} = 1 k \Omega \\ V_T = 1 V \end{array}$

- How do we find the Rise Time?
- Have to replace by new equivalent circuit where:
 - Capacitor is initially discharged (0.476 V)
 - Switch is open
- $V_{G1} = (0.476 5)e^{-t/\tau} + 5$
- $\tau = 10^{-12} \times 9500 \approx 10 ns$

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

•
$$V_{G1} = (0.476 - 5)e^{-t/\tau} + 5$$

 $\tau = 10^{-12} \times 9500 \approx 10ns$
• $(0.476 - 5)e^{-t_{rise}/\tau} + 5 = 1$ $9.5k\Omega$
 $-\tau \ln(0.884) = t_{rise}$
• $t_{rise} = 1.2ns$

$$R_{on} = 1k\Omega$$
$$V_T = 1V$$

Propagation Delay

 Rise and Fall Time are also called "Propagation Delays"

- Gives "delay time" between when the logical input changes and the logical output changes
- Book calls them $t_{pd,1\rightarrow 0}$ and $t_{pd,0\rightarrow 1}$

Reminder of Where We Started

Which implements:

Giving delay of LEFT gate.

Using Propagation Delays

- $t_{rise} = t_{pd,0\to1} = 1.2ns$
- $t_{fall} = t_{pd,1\to 0} = 2.2ns$
- Suppose A has been zero a long time and switches to 1
 - How long does it take for G_1 to go to 0?
 - How long does it take for OUT to go to 1?

Propagation Delays

- In general $t_{pd,0\rightarrow1}$ is not equal to $t_{pd,1\rightarrow0}$
- Thus, we usually just take the maximum and call that the propagation delay of the gate
- $t_{pd} = 2.2ns$
- Means that no matter what input you give the gate, output will be correct within 2.2ns

Bonus Question for CS61C Veterans

- Assume now that the rise and fall times of both gates are 2.2*ns*
- Assume that we have a register driving "A" and a register receiving "OUT"
- Assume the registers operate instantaneously
- What is the minimum clock time if this very boring buffer is our longest pipeline stage?

This is where we stopped

Power in the SRC Model

 Static power in the SRC Model is exactly as SR Model, compare:

- We're also interested in the dynamic power while capacitance is charging
- Algebra is a bit involved. We'll outline the concept. Book has a very thorough treatment in sections 11.1 through 11.3

Dynamic Power in NMOS Circuits

- When our inverter is going from low to high, we have the circuit on the left:
- In general, looks like circuit on the right: 5V R_L 9.5kΩ v_C V_{G1} ^VIN 1pFS 1pF

Dynamic Power in NMOS Circuits

- When our inverter is going from high to low, we have the circuit on the left:
- In general, looks like circuit on the right:

Dynamic Power

- Worst case is that inverter is driven by a sequence of 1s and 0s
 - Circuit constantly switching behavior
 - Gate capacitor constantly charging and discharging

Charges up towards V_S

Problem Setup

- *V*_{*in*} is
 - -0 for some time T_1
 - Dissipates some energy w₁
 - -1 for some time T_2
 - Dissipates some energy w₂

• See 11.1 through 11.3 for derivation

Charges up towards V_S

Solution

Avoiding Static Power Loss

- Next we will talk about CMOS, which stands for Complementary MOS
- So far, all of our transistors have been NMOS transistors, where they are on if $V_{GS} \ge V_T$
- Next, we will discuss a new type of FET transistor called a PMOS
- Only difference is that they will be on when $V_{GS} \leq V_T$

PMOS Transistor

- Drawn with a bubble at the input:
- Usually drawn with source on top and drain on bottom (for reasons that will become clear)
- Just as before, have ON and OFF states, now on when $V_{GS} \leq V_T \qquad q^{S}$

Anything logical we can do with NMOS...

- ...we can do with PMOS
- Example, we can build an inverter, try it for 60 seconds or so on the worksheet using a PMOS, 5V source, ground, and resistor
- Assume input signal is 0V or 5V and $V_T = -1V$

Here: R_L acts as a pulldown resistor

Analysis of PMOS Logic

- We could go through and repeat everything we did for NMOS, but it would be almost exactly the same thing
- Instead, we're now going to use NMOS and PMOS in a clever way

CMOS Inverter

- Two complementary implementations of the same logic function
- When V_{IN} is high:
 Path to ground is closed
 - Path to V_S is open

CMOS Inverter

- When *V*_{*IN*} is high:
 - Path to ground is closed
 - Path to V_S is open
- Huge resistance on open PMOS acts as a pull-up resistor

CMOS Inverter

- When V_{IN} is low:
 - Path to ground is open
 - Path to V_S is closed
- Huge resistance on open NMOS acts as a pull-down resistor

Static Power in CMOS

- What is the static power consumed by this CMOS inverter when IN=0?
- When IN=1?
- In reality, as gate insulator gets thinner, there is a significant leakage component

Dynamic Power in CMOS

 Load power: Since our CMOS gates will be driving capacitive loads, they will still draw power when switching (since power is provided to the load)

Dynamic Power in CMOS

- Leakage Power: Unless you're careful about timing, both MOSFETs could be closed at the same time
 - Power flows directly from V_S to ground
- Even if timing is perfect, both transistors will at some point be "weakly on" – subthreshold leakage

Dynamic Power

- These days, subthreshold leakage is a big issue
 - Thresholds have been reduced to decrease switching times
 - Reduced thresholds mean leakier MOSFETs
- In this class, we won't analyze this case, but be aware that in the world of digital integrated circuits, it plays a big role

CMOS

- CMOS Summary:
 - No need for a pull-up or pull-down resistor
 - Though you can avoid this even with purely NMOS logic (see HW7)
 - Greatly reduced static power dissipation vs. our simple NMOS only logic
 - In reality, thin gate oxides lead to some static nonzero *i_G*, so static power is not zero
 - Dynamic power is still hugely significant
 - Uses twice the number of transistors as our simple purely NMOS logic

Implementation of Complex Gates Using NMOS and CMOS

- In class today, we've discussed analysis of NMOS and CMOS circuits
- Haven't discussed how to design them
- Luckily, it is easy

That's it for today

Extra Slides

SR Model of the PMOS MOSFET

No, has nothing to do with SR flip-flop

71