EE40 Lecture 16 Josh Hug

8/02\/2010

Logistics

- HW7 due tomorrow
- HW8 will be due Friday
- Mini-midterm 3 next Wednesday
 - 80/160 points will be a take-home set of design problems which will utilize techniques we've covered in class
 - Handed out Friday
 - Due next Wednesday
 - Other 80/160 will be an in class midterm covering HW7 and HW8
- Final will include Friday and Monday lecture
 - Design problems will provide practice

Project 2

- Active filter lab and Booster lab due this week
 - For Booster lab, ignore circuit simulation, though it may be instructive to try the Falstad simulator
- Project 2 due next Wednesday

Design Problems

- ALL WORK MUST BE DONE COMPLETELY SOLO!
- Maximum allowed time will be 5 hours
 - Will be written so that it can be completed in approximately 2 hours
- Allowed resources:
 - May use any textbook (incl. Google Books)
 - Anything posted on the EE40 website
 - Only allowed websites are Google Books, wikipedia, and EE40 websites
 - Not allowed to use other websites like facebook answers, yahoo answers, etc. even if you are reading other people's responses
 - When in doubt, email me or text me
 - We will be very serious about cheating on this!

Example Design Problem

 Design a circuit which will sum three sinusoidal input voltages and attenuate any frequencies above 10,000 Hz by at least 20 dB

Project 2

- For those of you who want to demo Project 2, we'll be doing demos in lab on Wednesday
 - Either at 1 PM after mini-midterm
 - Or at 2 PM during usual lab period
 - Opinions?

Interactive Lecture Question

- Did you like the interactive worksheet intensive MOSFET lecture?
 - A. Yes, it was extremely useful and I highly prefer this type of lecture
 - B. Yes, it was useful, but the usual 1-way lecture is fine
 - C. No real opinion
 - D. Didn't like it
 - E. Hated it

MOSFET Model

- Schematically, we represent the MOSFET as a three terminal device
- Can represent all the voltages and currents between terminals as shown to the right

MOSFET modeling

- MOSFET models vary greatly in complexity
- **S Model:** Good for explaining MOSFETs to someone with no EE knowledge
- SR Model: Includes effective resistance of a MOSFET. Good for understanding how to choose pull-up resistance
- SR Model: Include gate capacitance. Good for understanding dynamic power and gate delay

S Model of the MOSFET

- The simplest model basically says that the MOSFET is:
 - Open for $V_{GS} < V_T$ - Closed for $V_{GS} > V_T$

SR Model of the MOSFET

[Has nothing to do with SR flip-flop]_{Hug}

The SRC Model

- The SRC Model is almost identical to the SR model, except that each gate node has a capacitance
- Like SR model: open when OFF and resistive when ON
- Note that now *i_G* is non-zero!

The SRC Model

- Useful for modeling:
 Gate delay: Takes time to charge up
 - Dynamic power: $i_G \neq 0$

SRC Model

- Consider our familiar pair of inverters
- We're going to focus on the behavior of our left inverter
- Let's assume that both MOSFETs have a gate capacitance of 1pF or $10^{-12}F$

SRC Model of our 2 Inverters

• We decide to ignore the function of the gate on the right, keeping it in mind only because we know we'll have to charge it

- Since $V_{G1}(0) = 5V$, $V_{G1}(\infty) = 0.476V$, and $\tau \approx 1ns$, then:
- $V_{G1}(t) =$ (5 - 0.476) $e^{-t/\tau}$ + 0.476
- How long will it take for the next inverter in the chain to turn on?

- $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$
- $\tau = 10^{-12} \times (9500 \parallel 1000) = 1.06 \times 10^{-9}$

- $(5 0.476)e^{-t_{fall}/\tau} + 0.476 = 1$
- $-\tau \ln(0.1158) = t_{fall}$
- So $t_{fall} = 2.2ns$
- We call this the "Fall Time": gives time for V_{G1} to fall from 5V to 1V

$$\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$$

Fall Time

- $(5 0.476)e^{-t/\tau} + 0.476 = 1$ • $\tau \approx 10^{-9}$
- Gives: $t_{fall} = 2.2ns$

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

- How do we find the Rise Time?
- Have to replace by new equivalent circuit where:
 - Capacitor is initially discharged (0.476 V)
 - Switch is open

 $\begin{array}{l} R_{on} = 1 k \Omega \\ V_T = 1 V \end{array}$

- How do we find the Rise Time?
- Have to replace by new equivalent circuit where:
 - Capacitor is initially discharged (0.476 V)
 - Switch is open
- $V_{G1} = (0.476 5)e^{-t/\tau} + 5$
- $\tau = 10^{-12} \times 9500 \approx 10 ns$

 $\begin{array}{l} R_{on} = 1k\Omega \\ V_T = 1V \end{array}$

•
$$V_{G1} = (0.476 - 5)e^{-t/\tau} + 5$$

 $\tau = 10^{-12} \times 9500 \approx 10ns$
• $(0.476 - 5)e^{-t_{rise}/\tau} + 5 = 1$ $9.5k\Omega$
 $-\tau \ln(0.884) = t_{rise}$
• $t_{rise} = 1.2ns$

$$R_{on} = 1k\Omega$$
$$V_T = 1V$$

Propagation Delay

 Rise and Fall Time are also called "Propagation Delays"

- Gives "delay time" between when the logical input changes and the logical output changes
- Book calls them $t_{pd,1\rightarrow 0}$ and $t_{pd,0\rightarrow 1}$

Reminder of Where We Started

Which implements:

Giving delay of LEFT gate.

Propagation Delays

- In general $t_{pd,0\rightarrow1}$ is not equal to $t_{pd,1\rightarrow0}$
- Thus, we usually just take the maximum and call that the propagation delay of the gate
- $t_{pd} = 2.2ns$
- Means that no matter what input you give the gate, output will be correct within 2.2ns

Propagation Delay

- Is our analysis still correct if we add more output gates?
- No, gate capacitance increases! Takes 3 times as long.

Power in the SRC Model

 Static power in the SRC Model is exactly as SR Model, compare:

- We're also interested in the dynamic power while capacitance is charging
- Algebra is a bit involved. We'll outline the concept. Book has a very thorough treatment in sections 11.1 through 11.3

Dynamic Power in NMOS Circuits

- When our inverter is going from low to high, we have the circuit on the left:
- In general, looks like circuit on the right: 5V R_L 9.5kΩ v_C V_{G1} ^VIN 1pFS 1pl

Dynamic Power in NMOS Circuits

- When our inverter is going from high to low, we have the circuit on the left:
- In general, looks like circuit on the right:

Dynamic Power

- Worst case is that inverter is driven by a sequence of 1s and 0s
 - Circuit constantly switching behavior
 - Gate capacitor constantly charging and discharging

Charges up towards V_S

Problem Setup

- *V*_{in} is
 - -0 for some time T_1
 - Dissipates some energy w₁
 - -1 for some time T_2
 - Dissipates some energy w₂

• See 11.1 through 11.3 for derivation

Charges up towards V_S

Solution

Avoiding Static Power Loss

- Next we will talk about CMOS, which stands for Complementary MOS
- So far, all of our transistors have been NMOS transistors, where they are on if $V_{GS} \ge V_T$
- Next, we will discuss a new type of FET transistor called a PMOS
- Only difference is that they will be on when $V_{GS} \leq V_T$

PMOS Transistor

- Drawn with a bubble at the input:
- Usually drawn with source on top and drain on bottom (for reasons that will become clear)
- Just as before, have ON and OFF states, now on when $V_{GS} \leq V_T \qquad q^{S}$

Anything logical we can do with NMOS...

- ...we can do with PMOS
- Example, we can build an inverter, try it for a minute or so on the worksheet using a PMOS, 5V source, ground, and resistor
- Assume input signal is 0V or 5V and $V_T = -1V$

Here: R_L acts as a pulldown resistor

Analysis of PMOS Logic

- We could go through and repeat everything we did for NMOS, but it would be almost exactly the same thing
- Instead, we're now going to use NMOS and PMOS together in a new clever way

CMOS Inverter

- Two complementary implementations of the same logic function
- When V_{IN} is high:
 Path to ground is closed
 - Path to V_S is open

CMOS Inverter

- When *V*_{*IN*} is high:
 - Path to ground is closed
 - Path to V_S is open
- Huge resistance on open PMOS acts as a pull-up resistor

CMOS Inverter

- When V_{IN} is low:
 - Path to ground is open
 - Path to V_S is closed
- Huge resistance on open NMOS acts as a pull-down resistor

Static Power in CMOS

- What is the static power consumed by this CMOS inverter when IN=0?
- When IN=1?
- In reality, there is a substantial static power component

Static Power in CMOS

- Gate Power: As gate oxides get smaller, gate current grows
- Subthreshold Leakage Power: As thresholds are reduced (to increase speed), transistors are never

transistors are never fully OFF, so current always flows from V_s to V_{low}

Dynamic Power in CMOS

 Load power: Since our CMOS gates will be driving capacitive loads, they will still draw power when switching (since power is provided to the load)

 STL: Both transistors are again weakly on at intermediate values

Power in CMOS

- Though subthreshold leakage is a significant component to MOSFET power (>50%), it involves a more complex MOSFET model we haven't studied
- We'll instead focus on dynamic load power
 - Still accounts for vast portion of chip power consumption

Load Power Analysis

- Assume our inverter is driven by a square wave
- Capacitor will be constantly charging and discharging

Load Power Analysis

 When input is low, capacitor charges to V_S, energy stored is

$$-\frac{1}{2}C_L V_S^2$$

 When input is high, capacitor charges to 0, energy stored is

- 0

Rising Case

 From homework, how much energy is dissipated in the resistor as C_L charges to V_S?

Falling Case

• If capacitor starts with $\frac{1}{2}C_LV_S^2$ Joules of energy, and it all gets dissipated through resistor, then energy dissipated is $\frac{1}{2}C_LV_S^2$

 $V_{in}=0$

Dynamic Load Power

- Thus, if clock cycle is long enough, each switching event consumes $\frac{1}{2}C_LV_S^2$ joules of energy
- In *T* seconds, we consume $C_L V_S^2$
- Power is $\frac{C_L V_S^2}{T} = C_L V_S^2 f$

CMOS

- CMOS Summary:
 - No need for a pull-up or pull-down resistor
 - Though you can avoid this even with purely NMOS logic (see HW7)
 - Greatly reduced static power dissipation vs. our simple NMOS only logic
 - In reality, MOSFETs are never truly off, and static leakage power consumes >50% of chip power
 - Dynamic power is still hugely significant
 - Uses twice the number of transistors as our simple purely NMOS logic

Preview of Tradeoffs in Digital Circuits

- Processor can do more work per second if f is high
 - Increasing V_S and lowering V_T give faster rise and fall times, letting us increase f
 - Dynamic power (and heat) in CMOS scales as $C_L V_S^2 f$
 - Subthreshold leakage power (and heat) gets larger as V_T gets smaller and as heat increases
- Smarter hardware takes more transistors
 - More area means fewer chips per wafer
 - More transistors means more power consumption

Implementation of Complex Gates Using NMOS and CMOS

- In class, we've discussed analysis of NMOS and CMOS circuits
- Haven't discussed how to design them
- Luckily, it is isn't very hard

Design of NMOS Circuits

- Gates can be designed which use only NMOS transistors and a pull-up resistor
 - Easy to pick parameters to satisfy static discipline
- The basic idea is to construct an NMOS network which:
 - Provides a path from V_{low} to V_{out} ONLY when logical function is false
 - When path from V_{low} to V_{out} is not available, then $V_{out} = V_{high}$ through pull-up resistor
- Examples on board

Example on Board

CMOS Design

- In the CMOS case, things are almost exactly the same
- NMOS network which connects V_{low} to V_{out} only when function is false
 Same network as in NMOS only logic
- PMOS network which connects V_{high} to V_{out} only when function is true
- Examples on board

This is where we stopped

Model Corner Cases

- What happens if:
 - $-V_{in} = 0.99V$

$$-V_{in} = 1.01V$$

$$-V_{in}=1V$$

- Real MOSFET model is more complicated
 - Switch can be semi-on
 - i_{DS} saturates for large V_{DS} [not really a resistor]

Real MOSFET Model

• If we have time this week, we'll discuss a more realistic model of the MOSFET

$$i_{DS} = \begin{cases} K \left[(v_{GS} - V_T) v_{DS} - \frac{v_{DS}^2}{2} \right] & \text{for } v_{GS} \ge V_T \text{ and } v_{DS} < v_{GS} - V_T \\\\ \frac{K (v_{GS} - V_T)^2}{2} & \text{for } v_{GS} \ge V_T \text{ and } v_{DS} \ge v_{GS} - V_T \\\\ 0 & \text{for } v_{GS} < V_T. \end{cases}$$

- Useful for understanding invalid input voltages in logic circuits
- More importantly, tells us how we can utilize MOSFETs in analog circuits
 - Op-amps are built from transistors

Nonlinear Elements

- This more realistic MOSFET model is nonlinear
- MOSFETs are three terminal devices, and it will be tough to begin our nonlinear adventure
 - Functionality is similar to what we've seen before (op-amps)
 - Analysis is tough
- We'll instead turn to diodes
 - Interesting new function
 - Analysis is easier
- If we have time, we will talk on Friday or Monday about analog MOSFET circuits

Diode Physical Behavior and Equation

I-V characteristic of PN junctions

In EECS 105, 130, and other courses you will learn why the I vs. V relationship for PN junctions is of the form

$$I = I_0 (e^{V_D / nV_T} - 1) \qquad V_T = \frac{kT}{q} = 0.026V$$

where I_0 is a constant related to device area and materials used to make the diode, $q = \text{electronic charge} = 1.6 \times 10^{-19}$, k is Boltzman constant, and T is absolute temperature. $KT/q = 0.026V \text{ at} 300^{\circ}\text{K}$, a typical value for I_0 is $10^{-12} - 10^{-15}$ A

We note that in forward bias, I increases **exponentially** and is in the μ A-mA range for voltages typically in the range of 0.6-0.8V. In reverse bias, the current is essentially zero.

Solving diode circuits

- How do we solve this circuit?
- KCL at the top right node: $\frac{V - V_{Th}}{R_{Th}} = I_0 \left(e^{\frac{V}{0.026}} - 1 \right)$

Quantitative I-V characteristics:

$$I = I_0 (e^{V_D/V_T} - 1)$$

$$n = 1$$

No algebraic solution!

Load Line Analysis Method

- 1. Graph the *I-V* relationships for the non-linear element and for the rest of the circuit
- 2. The operating point of the circuit is found from the intersection of these two curves.

EE40 Summer 2010

Load Line Example: Power Conversion Circuits

- Converting AC to DC
- Potential applications: Charging a battery

- Can we use phasors?
- Example on board

Piecewise Linear Model

For a Si pn diode, $V_{Don} \cong 0.7 \text{ V}$

RULE 1: When
$$I_D > 0$$
, $V_D = V_{Don}$
RULE 2: When $V_D < V_{Don}$, $I_D = 0$
Closed in forward bias mode

open in reverse bias mode

How to Analyze Diode Circuits with Piecewise Linear Model

A diode has only two states:

- forward biased: $I_D > 0$, $V_D = 0.7 V$
- reverse biased: $I_D = 0$, $V_D < 0.7$ V

Procedure:

- 1. Guess the state(s) of the diode(s)
- 2. Check to see if KCL and KVL are obeyed.
- 3. If KCL and KVL are not obeyed, refine your guess
- 4. Repeat steps 1-3 until KCL and KVL are obeyed.

If $v_s(t) > 0.7$ V, diode is forward biased (else KVL is disobeyed – try it)

If $v_s(t) < 0.7$ V, diode is reverse biased (else KVL is disobeyed – try it)

Diode Logic: AND Gate

• Diodes can be used to perform logic functions:

AND gate

output voltage is high only if both A and B are high

Inputs A and B vary between 0 Volts ("low") and V_{cc} ("high") Between what voltage levels does C vary?

Diode Logic: OR Gate

• Diodes can be used to perform logic functions:

Inputs A and B vary between 0 Volts ("low") and V_{cc} ("high") Between what voltage levels does C vary?

output voltage is high if either (or both) A and B are high

Diode Logic: Incompatibility and Decay

Diode Only Gates are Basically Incompatible:

Signal Decays with each stage (Not regenerative)

That's all for today

• Next time, more Diodes and a little more on the more realistic model of MOSFETs