EE40 Lecture 17 Josh Hug

8/04/2010

Logistics

- HW8 will be due Friday
- Mini-midterm 3 next Wednesday
 - 80/160 points will be a take-home set of design problems which will utilize techniques we've covered in class
 - Handed out Friday
 - Due next Wednesday
 - Other 80/160 will be an in class midterm covering HW7 and HW8
- Final will include Friday and Monday lecture, Midterm won't
 - Design problems will provide practice

Project 2

- Booster lab actually due next week
 - For Booster lab, ignore circuit simulation, though it may be instructive to try the Falstad simulator
- Project 2 due next Wednesday
 - Presentation details to come [won't be mandatory, but we will ask everyone about their circuits at some point]

Project 2

- For those of you who want to demo Project 2, we'll be doing demos in lab on Wednesday at some point
 - Will schedule via online survey

CMOS/NMOS Design Correction

- (Sent by email)
- My on-the-fly explanation was correct, but not the most efficient way
 - If your FET circuit is implementing a logic function with a bar over it, i.e.

•
$$Z = \overline{A + BC + D + EF(G + H)}$$

- Then don't put an inverter at the output, it just makes things harder and less efficient
- Sorry, on-the-fly-explanations can be dicey

CMOS

- CMOS Summary:
 - No need for a pull-up or pull-down resistor
 - Though you can avoid this even with purely NMOS logic (see HW7)
 - Greatly reduced static power dissipation vs. our simple NMOS only logic
 - In reality, MOSFETs are never truly off, and static leakage power consumes >50% of chip power
 - Dynamic power is still hugely significant
 - Uses twice the number of transistors as our simple purely NMOS logic

Tradeoffs in Digital Circuits

- Processor can do more work per second if f is high
 - Increasing V_S and lowering V_T give faster rise and fall times, letting us increase f
 - Dynamic power (and heat) in CMOS scales as $C_L V_S^2 f$
 - Subthreshold leakage power (and heat) gets larger as V_T gets smaller and as heat increases
- Smarter hardware takes more transistors
 - More area means fewer chips per wafer
 - More transistors means more power consumption

Model Corner Cases

- What happens if:
 - $-V_{in} = 0.99V$

$$-V_{in} = 1.01V$$

$$-V_{in}=1V$$

- Real MOSFET model is more complicated
 - Switch can be semi-on
 - i_{DS} saturates for large V_{DS} [not really a resistor]

Real MOSFET Model

• If we have time this week, we'll discuss a more realistic model of the MOSFET

$$i_{DS} = \begin{cases} K \left[(v_{GS} - V_T) v_{DS} - \frac{v_{DS}^2}{2} \right] & \text{for } v_{GS} \ge V_T \text{ and } v_{DS} < v_{GS} - V_T \\\\ \frac{K (v_{GS} - V_T)^2}{2} & \text{for } v_{GS} \ge V_T \text{ and } v_{DS} \ge v_{GS} - V_T \\\\ 0 & \text{for } v_{GS} < V_T. \end{cases}$$

- Useful for understanding invalid input voltages in logic circuits
- More importantly, tells us how we can utilize MOSFETs in analog circuits
 - Op-amps are built from transistors

Nonlinear Elements

- This more realistic MOSFET model is nonlinear
- MOSFETs are three terminal nonlinear devices. We will get back to these briefly on Friday
 - Functionality is similar to what we've seen before (op-amps)
 - Analysis isn't too bad, but will take too long to go through. If you're curious see chapters 7 and 8.
- We'll instead turn to diodes
 - Interesting new function
 - Analysis is easier

Diode Physical Behavior and Shockley Equation

I-V characteristic of PN junctions

In EECS 105, 130, and other courses you will learn why the I vs. V relationship for PN junctions is of the form

$$I = I_0 (e^{V_D / nV_T} - 1) \qquad V_T = \frac{kT}{q} = 0.026V$$

where I_0 is a constant related to device area and materials used to make the diode, $q = \text{electronic charge} = 1.6 \times 10^{-19}$, k is Boltzman constant, and T is absolute temperature. a typical value for I_0 is $10^{-12} - 10^{-15}$ A

We note that in forward bias, I increases **exponentially** and is in the μ A-mA range for voltages typically in the range of 0.6-0.8V. In reverse bias, the current is essentially zero.

Shockley Equation for the Diode

$$I = I_0 (e^{V_D/nV_T} - 1)$$

$$V_T = \frac{kT}{q} = 0.026V$$

For typical values: T = 300K $I_0 = 10^{-12}A$

Real Diodes will eventually become linear for large V_D , and for really large V_D they'll die

V _D (volts)	I (amps)
-1	-0.00000000001
-0.1	-0.000000000098
0	0
0.1	0.00000000045
0.3	0.00000102
0.6	0.01
0.7	0.49
0.8	23
0.9	1080
	пич

Large Voltage Limits of the Diode

Solving diode circuits

- How do we solve this circuit assuming zoomed-in region?
- KCL at the top right node: $V_{Th} - V$

$$\frac{V_{Th} - V}{R_{Th}} = I_0 \left(e^{\frac{V}{0.026}} - 1 \right)$$

Quantitative I-V characteristics:

No algebraic solution!

Load Line Analysis Method

- 1. Graph the *I-V* relationships for the non-linear element and for the rest of the circuit
- 2. The operating point of the circuit is found from the intersection of these two curves.

EE40 Summer 2010

Load Line Example: Power Conversion Circuits

- Converting AC to DC
- Potential applications: Charging a battery

- Can we use phasors?
- Example on board

Simple Model of a Diode

- Just as we did with MOSFETs, we will utilize a simpler model
 - Goal: Accurate enough that we can design circuits
- For Diodes, we started with the "real" model and are now simplifying
- For MOSFETs, we started with the simplest model, and added complexity
 - Omitted real model for MOSFETs because it's not very intuitive [unlike real diodes]

Simpler Diode Model

Goal: To give us approximately the right answer for most inputs

Voltage Source Model

ON: When
$$I_D > 0$$
, $V_D = V_{Don}$
OFF: When $V_D < V_{Don}$, $I_D = 0$

Diode behaves like a voltage source in series with a switch:
closed in forward bias mode

open in reverse bias mode

How to Analyze Diode Circuits with Method of Assumed States

A diode has only two states:

- forward biased: $I_D > 0$, $V_D = 0.7 V$ (or some other V_K)
- reverse biased: $I_D = 0$, $V_D < 0.7$ V

Procedure:

- Guess the state(s) of the diode(s), drawing equivalent circuit given diode states
- 2. Check to see if your resulting voltages and currents match assumptions.
- 3. If results don't match assumptions, guess again
- 4. Repeat until you get a consistent guess

If $v_s(t) > 0.7$ V, diode is forward biased

If $v_{\rm s}(t) < 0.7$ V, diode is reverse biased

Bigger Examples on Board

- DC Source with 2 Diodes
- Half-wave rectifier
- Full-wave rectifier
- See written notes

That's all for today

- Next time, maybe a little more diodes and then semiconductor physics and how solar cells, diodes, and MOSFETs work
- Time permitting we may talk about real model of a MOSFET

Extra Slides

Diode Logic: AND Gate

• Diodes can be used to perform logic functions:

AND gate

output voltage is high only if both A and B are high

Inputs A and B vary between 0 Volts ("low") and V_{cc} ("high") Between what voltage levels does C vary?

Diode Logic: OR Gate

• Diodes can be used to perform logic functions:

Inputs A and B vary between 0 Volts ("low") and V_{cc} ("high") Between what voltage levels does C vary?

output voltage is high if either (or both) A and B are high

Diode Logic: Incompatibility and Decay

Diode Only Gates are Basically Incompatible:

Signal Decays with each stage (Not regenerative)

Switch Model

For a Si pn diode, $V_{Don} \cong 0.7 \text{ V}$

<u>ON</u>: When $I_D > 0$, $V_D = 0$ <u>OFF</u>: When $V_D < V_{Don}$, $I_D = 0$

Diode behaves like a voltage source in series with a switch:
closed in forward bias mode

open in reverse bias mode

VSR Model

<u>ON</u>: When $V_D \ge V_{D_{on}}$, then $I_D = (V_D - V_{D_{on}})/R_{on}$ <u>OFF</u>: When $V_D < V_{D_{on}}$, $I_D = 0$

Typical $R_{on} = 10\Omega$

Design Problems

- ALL WORK MUST BE DONE COMPLETELY SOLO!
- Maximum allowed time will be 5 hours
 - Will be written so that it can be completed in approximately 2 hours
- Allowed resources:
 - May use any textbook (incl. Google Books)
 - Anything posted on the EE40 website
 - Only allowed websites are Google Books, wikipedia, and EE40 websites
 - Not allowed to use other websites like facebook answers, yahoo answers, etc. even if you are reading other people's responses
 - When in doubt, email me or text me
 - We will be very serious about cheating on this!

Example Design Problem

 Design a circuit which will sum three sinusoidal input voltages and attenuate any frequencies above 10,000 Hz by at least 20 dB

Example: Diodes in Lab

- What happens if we connect our DC source in the lab to a diode?
 - Will it blow up?

EE40 Summer 2010

Peak Detection

- Let's go back to our sinusoidal source connected to a diode
- This time, let's add a capacitor in parallel with our output resistor and see what happens

$$i_D = \frac{\nu_C}{R} + C \frac{d\nu_C}{dt}$$

$$v_{\rm D} = v_i - v_{\rm C}$$

$$i_D = I_s \left(e^{q \left(v_i - v_C \right)/kT} - 1 \right)$$

$$\frac{d\nu_C}{dt} = -\frac{\nu_C}{RC} + \frac{I_s}{C} \left[e^{q \left(\nu_i - \nu_C \right)/kT} - 1 \right]$$