EE40
 Lecture 18 Josh Hug

8/06/2010

Logistics

- HW8 due today @5PM - short but tough
- Mini-midterm 3 next Wednesday
- 80/160 points will be a take-home set of design problems which will utilize techniques we've covered in class
- Posted online
- Other 80/160 will be an in class midterm covering HW7 and HW8
- Final will include Friday and Monday lecture, Midterm won't
- Design problems will provide practice

Project 2

- Project 2 demos next Wednesday (after midterm), need two things to be "done":
- Check-off: Verifying that your circuit works - can optionally be done before Wednesday if you're worried about circuit breaking before presentation
- Presentation: Asking you questions about why your circuit works
- No lab report
- Presentation will be Wednesday in lab
- 1:15 PM until we're done (~3:00 PM?)
- Cooper, Onur, and I will walk around asking questions
- Bring your circuit even if function is checked-off

Project 2

- Booster lab actually due next week
- For Booster lab, ignore circuit simulation, though it may be instructive to try the Falstad simulator
- Project 2 demos next Wednesday (after midterm)

EE40 this Summer

- We've covered a terrifyingly large number of things for only 7 weeks
- By this time last semester, they had just finished RC and RL circuits and hadn't started phasors yet, we've done all that and:
- Phasors
- Transfer Functions and Filtering
- Real and Reactive Power
- Bode Plots
- Qualitatively: Integrated Circuits Manufacturing
- Defining Digital Systems
- MOSFET structure and 3 models of the MOSFET
- Discussed analysis and design of transistor circuits
- Function
- Delay
- Power Dissipation
- Diode circuit analysis
- You'll pardon me if we have a little fun...

Rewatching Lectures

- As you remember in lecture this week, I realized I like saying "kind of" and "sort of" a lot
- I rewatched some of my lectures, and it is worse than I had feared
- Annihilates any residual professorial gravitas remaining to a short grad student with long hair
- As expected, youtube comments are less than friendly
- Let's set the record straight, iClicker style

BYMYSYD - we'll start easy

BYMYSYD i thought my handwriting was bad
6 days ago

- How terrible is my handwriting?
- A. Often illegible
- B. Readable, but painful to behold
- C. It's fine
- D. It's great, also I am a liar
-4

YTISubZero

YTlsubzero
6 days ago

- Do I seem to be high in class?
- A. Never
- B. Sometimes
- C. I am basically watching Cheech and Chong give a lecture on electrical engineering [if you are too young, substitute "Harold and Kumar"]

Yokombo - Lecture on RC and RL circuits

yokombo
1 day ago

- How freakish am I?
- A. Seem pretty normal
- B. Normal, except the weird walk
- C. Eccentric, in a safely professorish way
- D. I have on occasion been afraid to come to class

Freak!

Subscriptions (329)

hivedrone83

hivedrone83
8 hours ago
like, oh my god, gag me with an op amp spoon. those, like, circuits are like, oh my god, like, so, like, crazy.
I feel like i am watching a lecture from Pierce College in the 80's being taught by a valley girl. I feel bad for anyone that paid money for this class.

- This one was pretty funny.

Today

- Intro to semiconductor physics
- Diodes and PN-Junctions

Semiconductor Devices

Physical Device

Symbol

- What are "P" and "N"?
- Magic?
- Alchemy?

Atomic Structure

- Electrons are organized into DISCRETE orbitals, basically a nested set of shells
- If you rememeber high school chemistry:
- Neon's electronic subshells: $1 s^{2} 2 s^{2} 2 p^{6}$

- The existence of these shells plays a key role in conductivity. It is hard to give an electron to someone with no room to hold it.

Valence Shells

- Differently put: When you apply an electric field, the electrons want to speed up
- They're close to nuclei, so they have to follow the rules: Only discrete energy levels (even when transiting across the material)

- Can't go up to the next level, because the electric field can't get them that high

Classification of Materials: Insulators

- Solids in which all electrons are tightly bound to atoms are insulators.
- e.g. Neon: applying an electric field will tend to do little, because it is hard for an electron to move in to your neighbors valence shell.

Electrons in Conductors and Insulators

- Solids with "free electrons" - that is electrons not directly involved in the inter-atomic bonding- are the familiar metals ($\mathrm{Cu}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Au}, \mathrm{etc}$)
- Often 1 free electron per atom
- Solids with no free electrons are the familiar insulators (glass, quartz crystals, ceramics, etc.)

Resistance of a Metal vs. Temperature

- How does the resistance of a metal vary with temperature?
- A. Resistance increases as temperature goes up
- B. Resistance decreases as temperature goes up

Why?

- In a hot metal everything is moving around a lot more
- Electrons trying to get from point a to point b are constantly running into this big disorderly surface fluctuating around them
- A very cold metal, by contrast, sits relatively still, so electrons can zoom along the lattice unhindered

Electrons in Semiconductors

- Silicon is an insulator, but at higher temperatures some of the bonding electrons can get free and make it a little conducting - hence the term "semiconductor"
- Pure silicon is a poor conductor (and a poor insulator). It has 4 valence electrons, all of which are needed to bond with nearest neighbors. No free electrons.

The Periodic Table

H												III IV V					He^{2}
3	4											3	${ }^{6}$	7	5	$\stackrel{\square}{ }$	10
Li	Be											B	C	N	0	F	Ne
11	12											13	14	13	it	17	is
Na	M9											A	S	P	S	0	At
17	x	21	22	$2)$	24	2	x	12	at	29	3	31	1	3	${ }^{\text {w }}$	13	\pm
K	Ca	Sc	7	V	Cr	Mn	Fe	Co	Ni	(u)	Zn	Ga	Ge	As	Se	Br	Kf_{5}
17	3	37	4)	41	4	${ }^{41}$	4	45	48	47	य	6	30	31	प्र	31	54
Rb	St	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	(d)	Ip	So	Sb	Te	1	Xe
Ss	5	5	万	3	μ	75	7	7	I8	$\sqrt{7}$	41	31	82	\$1	${ }^{81}$	5	96
Cs	Bd	La	Hf	la	W	Re	Os	If	P 7	Au	Hg	II	Pb	8	P0	At	R n
-1	5	\%	${ }^{1 / 4}$	7es	156	T01	180	N	1 l	III	112		T/4		IIs		118
f	Ra	Ac	Rf	Db	Sq	B	Hs	Mi	Nun	Uuu	Uub		Uuq		Uuh		Uno

IIt	P\%	co	$\begin{aligned} & \mathrm{t1} \\ & \mathrm{Pm} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{EU} \end{aligned}$	64	$\begin{aligned} & 66 \\ & 1 \mathrm{~b} \end{aligned}$	D D	ct	$\begin{aligned} & 61 \\ & 67 \end{aligned}$	Tm	Y6	n Lu
96	91	92	93	91	3	96	57	25	37	ke	141	+02	103
Th	Pd	1	N / p	Pu	Am	Cm	Pk		5	fm	Md	No	17

\square Metal $\quad \square$ Metalloid \square Nonmetal

Electronic Bonds in Silicon

2-D picture of perfect crystal of pure silicon; double line is a $\mathrm{Si}-\mathrm{Si}$ bond with each line representing an electron

Essentially no free electrons, and no conduction \rightarrow insulator
Actual structure is 3-dimensional tetrahedral- just like carbon bonding in organic and inorganic materials.

Crystal Structure of Silicon

How dense?

$$
\approx 5 \times 10^{22} / \mathrm{cm}^{3}
$$

Animated Movies from wikipedia

Bandgap

- Electrons are mobile in the "conduction band", but in the "valence band", they are locked in (because valence band is full)
- The excited electrons move from the valence band into the conduction band
- When there is an extremely strong electric field
- Or when the crystal is illuminated with photons whose energy is larger than the bandgap energy
- Or when the crystal is sufficiently heated

Semiconductors

- Resistance DECREASES with temperature
- Yes, everything is jostling around more!
- More electrons can be shaken free to move around
- While traveling, these electrons endure scattering as they repeatedly run into the jostling landscape. Heat exacerbates this
- You can't win if you don't play
- More players
- Worse odds
- Still get more absolute number of successes

Bandgap

- If an electron is excited into the conduction band, it can move
- Interestingly, the "hole" left behind at the bottom can also move.
- No actual hole particle, but the ensemble of electrons can move as a whole [no pun intended]

Band gap, E_{g}

Shockley's Parking Garage Analogy for Conduction in Si

Two-story parking garage on a hill:

If the lower floor is full and top one is empty, no traffic is possible. Analog of an insulator or a non-excited semiconductor. All electrons are locked up.

Shockley's Parking Garage Analogy for Conduction in Si

Two-story parking garage on a hill:

If one car is moved upstairs, it can move AND THE HOLE ON THE LOWER FLOOR CAN MOVE. Conduction is possible. Analog to warmed-up semiconductor. Some electrons get free (and leave "holes" behind).

Shockley's Parking Garage Analogy for Conduction in Si

Two-story parking garage on a hill:

If an extra car is "donated" to the upper floor, it can move.
Conduction is possible. Analog to N-type
semiconductor. (An electron donor is added to the crystal, creating free electrons).

Shockley's Parking Garage Analogy for Conduction in Si

Two-story parking garage on a hill:

If a car is removed from the lower floor, it leaves a HOLE which can move. Conduction is possible. Analog to P type semiconductor. (Acceptors are added to the crystal, "consuming" bonding electrons,creating free holes).

Fermi-Dirac Distribution

- Fermi-Dirac function provides the probability that an energy level is occupied by a fermion which is under thermal equilibrium. Electrons as well as holes are Fermions and hence obey Fermi-Dirac statistics.

No electrons can be above the valence band at OK, since none have energy above the Fermi level and there are no available energy states in the band gap.

Fig. 5. Fermi function plots at absolute zero, mid-range, and high temperature.

Fermi-Dirac Distribution of Electrons and Holes

$$
\begin{gathered}
n=p \\
n \times p=n_{i}^{2}
\end{gathered}
$$

$$
n_{i}=\sqrt{N_{c} N_{v} e^{-\frac{E_{g}}{k T}}}
$$

$N_{C}=\#$ states in conduction band $N_{V}=\#$ states in valence band
$E_{g}=$ Energy gap between bands
$k=$ Boltzman constant
T =Temperature
@ Room temperature:
$n_{i} \approx 10^{10} / \mathrm{cm}^{3}$

10 billion electrons seems like a lot to me

- iClicker Question: If silicon has approximately $10^{10} / \mathrm{cm}^{3}$ free electrons, is that a lot compared to the number of free electrons in a cm^{3} of iron?
- A. No, a cm^{3} of iron has at least 10^{20} times as many electrons
- B. No, a cm^{3} of iron has at least 10^{10} times as many electrons
- C. They have about the same number
- D. Silicon has at least 10^{10} as many electrons per cm^{3}

Density of Silicon $\approx 5 \times 10^{22} / \mathrm{cm}^{3}$

How to get conduction in Si ?

We must either:

1) Chemically modify the Si to produce free carriers (permanent) or
2) Transiently "induce" them by electric fields, photons, or temperature (temporary)

For the first approach, controlled impurities, "dopants", are added to Si:

Add group V elements (5 bonding electrons vs four for Si), such as phosphorus or arsenic
(Extra electrons produce "free electrons" for conduction.)
or

Add group III elements (3 bonding electrons), such as boron
Deficiency of electrons results in "free holes"

The Periodic Table

H												III IV V					He^{2}
3	4											3	${ }^{6}$	7	5	$\stackrel{\square}{ }$	10
Li	Be											B	C	N	0	F	Ne
11	12											13	14	13	it	17	is
Na	M9											A	S	P	S	0	At
17	x	21	22	$2)$	24	2	x	12	at	29	3	31	1	3	${ }^{\text {w }}$	13	\pm
K	Ca	Sc	7	V	Cr	Mn	Fe	Co	Ni	(u)	Zn	Ga	Ge	As	Se	Br	Kf_{5}
17	3	37	4)	41	4	${ }^{41}$	4	45	48	47	य	6	30	31	प्र	31	54
Rb	St	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	(d)	Ip	So	Sb	Te	1	Xe
Ss	5	5	万	3	μ	75	7	7	I8	$\sqrt{7}$	41	31	82	\$1	${ }^{81}$	5	96
Cs	Bd	La	Hf	la	W	Re	Os	If	P 7	Au	Hg	II	Pb	8	P0	At	R n
-1	5	\%	${ }^{1 / 4}$	7es	156	T01	180	N	1 l	III	112		T/4		IIs		118
f	Ra	Ac	Rf	Db	Sq	B	Hs	Mi	Nun	Uuu	Uub		Uuq		Uuh		Uno

IIf	50 Pr	ca	61 Pm	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\begin{aligned} & 68 \\ & E U \end{aligned}$	64	$\begin{aligned} & 66 \\ & 1 \mathrm{~b} \end{aligned}$	${ }^{66}$	Ho	$\begin{aligned} & 618 \\ & 6 f \end{aligned}$	Mm	\%	$\begin{aligned} & n \\ & \mathrm{~L} \end{aligned}$
96	จ1	92	$9)$	91	n	96	57	25	3	Me	16.1	- 82	100
Th	Pa	1	N	Pu	An	Cm	8k	Cf	Fs	fm	Md	No	I

\square Metal $\quad \square$ Metalloid \square Nonmetal

Doping Silicon with Donors (n-type)

Donors donate mobile electrons (and thus " n-type" silicon)
Example: add arsenic (As) to the silicon crystal:

The extra electron with As, "breaks free" and becomes a free electron for conduction

Doping with Acceptors (p-type)

Group III element (boron, typically) is added to the crystal

Immobile (stuck) negative boron ion after accepting electron from neighboring bond

The "hole" which is a missing bonding electron, breaks free from the B acceptor and becomes a roaming positive charge, free to carry current in the semiconductor. It is positively charged.

Doping

- Typical doping densities: $10^{16 \sim} 10^{19} \mathrm{~cm}^{-3}$
- Atomic density for $\mathrm{Si}: 5 \mathrm{x}$ 10^{22} atoms/cm ${ }^{3}$
- Dopant concentration of $10^{18} \mathrm{~cm}^{-3}$ is 1 in 50,000
- Doping is like
- Two people in all of Berkeley wearing a green hat

Electron and Hole Densities in Doped Si

- Instrinsic (undoped) Si

$$
\begin{aligned}
& n=p=n_{i} \\
& n p=n_{i}^{2}
\end{aligned}
$$

- N-doped Si
- Assume each dopant atom contributes one electron

$$
\begin{aligned}
& n=N_{d} \\
& p=n_{i}^{2} / N_{d}
\end{aligned}
$$

- p-doped Si
- Assume each dopant atom contributes one hole

$$
\begin{aligned}
& p=N_{a} \\
& n=n_{i}^{2} / N_{a}
\end{aligned}
$$

Doping Example

- Undoped silicon has an intrinsic carrier concentration of roughly 10^{10} electrons $/ \mathrm{cm}^{3}$, and 10^{10} holes $/ \mathrm{cm}^{3}$
- If we add phosphorus (group V atom with an extra electron) we get n-type silicon
- If we add 10^{15} atoms of phosphorus per cm^{3}, our new electron concentration is roughly 10^{15} electrons per cm^{3}
- n_{i}^{2} remains constant (trust me)
- New hole concentration:
- $p=\frac{10^{20} / \mathrm{cm}^{6}}{10^{15} / \mathrm{cm}^{3}}=10^{5} / \mathrm{cm}^{3}$

$$
\begin{aligned}
& n=N_{d} \\
& n_{i}=n p=10^{10} / \mathrm{cm}^{3} \\
& p=n_{i}^{2} / N_{d}
\end{aligned}
$$

- Will new material be more or less conductive?

Summary of n - and p-type silicon

Pure silicon is an insulator. At high temperatures it conducts weakly.

If we add an impurity with extra electrons (e.g. arsenic, phosphorus) these extra electrons are set free and we have a pretty good conductor (n-type silicon).

If we add an impurity with a deficit of electrons (e.g. boron) then bonding electrons are missing (holes), and the resulting holes can move around ... again a pretty good conductor (p-type silicon)

Now what is really interesting is when we join n-type and p-type silicon, that is make a pn junction. It has interesting electrical properties.

Junctions of n- and p-type Regions

p-n junctions form the essential basis of all semiconductor devices.
A silicon chip may have 10^{8} to $10^{9} \mathrm{p}$-n junctions today.
How do they behave? What happens to the electrons and holes? What is the electrical circuit model for such junctions?
n and p regions are brought into contact :

Junctions of n - and p-type Regions

n and p regions are brought into contact :

- Electron are running around randomly on the n side, and holes on the p side [diffusion]
- Before the regions are touching, they are in a homogeneous box just rearranging themselves meaninglessly
- Once regions touch, electrons and holes mix

Depletion Region Approximation - Aha!

- When the junction is first formed, mobile carriers diffuse across the junction (due to the concentration gradients)
- Holes diffuse from the p side to the n side, leaving behind negatively charged immobile acceptor ions
- Electrons diffuse from the n side to the p side, leaving behind positively charged immobile donor ions

\rightarrow A region depleted of mobile carriers is formed at the junction.
- The space charge due to immobile ions in the depletion region establishes an electric field that opposes carrier diffusion.

Charge Density Distribution

Charge is stored in the depletion region.

quasi-neutral p region depletion region quasi-neutral n region
charge density $\left(\mathrm{C} / \mathrm{cm}^{3}\right)$
Area must match

Two Governing Laws

Gauss's Law describes the relationship of charge (density) and electric field: Electric field is integral of charge density

$$
\frac{d E}{d x}=\frac{\rho}{\varepsilon}
$$

$$
E(x)-E\left(x_{0}\right)=\frac{1}{\varepsilon} \int_{x_{0}}^{x} \rho(x) d x
$$

Poisson's Equation describes the relationship between electric field distribution and electric potential: Potential is integral of negative electric field.

$$
\phi(x)-\phi\left(x_{0}\right)=\int_{x_{0}}^{x}-E(x) d x
$$

Electric Field from Electric Charge

Why do we care about electric field?

- Tells us how a free charge will behave

quasi-neutral p region depletion region quasi-neutral n region

Electric Potential from Electric Field

Why do we care about potential?

- Another view of free charge movement

quasi-neutral p region depletion region quasi-neutral n region

Holes roll downhill
Electrons roll uphill

Diffusion vs. Drift

- Free holes on the p-side will randomly wander (diffuse throughout) the flat part of the plane
- On the p-side, holes are the majority carrier
- A very small number of them will get lucky and will roll up the hill
- This is the "hole diffusion current"

Diffusion vs. Drift

- Free holes on the n -side will randomly wander (diffuse throughout) the flat part of the plane
- On the n -side, holes are the minority carrier
- If they happen to hit the sloping part of the hill, they will DRIFT down the hill because of the electric field
- This is the "hole drift current"

Diffusion vs. Drift

- Holes on the right are "drifters", aimless wanderers coasting along who find themselves being moved by forces of the universe beyond their control
- Holes on the left are "diffusers", a rare breed so aimless that they defy physical obstacles

One last analogy

$$
\begin{aligned}
& \mathrm{p}=10^{18} \\
& \mathrm{n}=10^{4}
\end{aligned}
$$

- Billions of hobos at the base of Mount Everest and a few at the top, all randomly wandering

Hole Drift and Hole Diffusion Current

- Hole drift current:
- Hole diffusion current:

iClicker Time

- If electrons roll uphill, what direction is the net movement of electron drift? What direction is the net movement of electron diffusion?
Drift Diffusion
A. Left Left
B. Left Right
C. Right Left
D. Right Right

$$
\mathrm{p}=10^{18}
$$

$$
\mathrm{n}=10^{4}
$$

iClicker Time

- If electrons drift right and diffuse left, which directions are electron drift CURRENT and electron diffusion CURRENT?

Drift Diffusion	
A. Left	Left
B. Left	Right
C. Right	Left
D. Right	Right

$\mathrm{p}=10^{18}$
$\mathrm{n}=10^{4}$

Hole Drift and Hole Diffusion Current

- Hole drift current:
- Hole diffusion current:
- Electron drift current:
- Electron diffusion current:

Effect of Applied Voltage

- The quasi-neutral p and n regions have low resistivity, whereas the depletion region has high resistivity. Thus, when an external voltage V_{D} is applied across the diode, almost all of this voltage is dropped across the depletion region. (Think of a voltage divider circuit.)
- If $V_{D}>0$ (forward bias), the potential barrier to carrier diffusion is reduced by the applied voltage.
- If $V_{D}<0$ (reverse bias), the potential barrier to carrier diffusion is increased by the applied voltage.

Depletion Approx. - with $\mathrm{V}_{\mathrm{D}}<0$ reverse bias

Higher barrier and few hofés in $\mathrm{n}^{\varepsilon_{s}}$ type lead to little current! $\quad \mathrm{p}=10^{5}$

$$
\begin{gathered}
\text { Built-in potential } \phi_{\mathrm{bi}}=\frac{q N_{d}}{2 \varepsilon_{s}} x_{n o}{ }^{2}+\frac{q N_{a}}{2 \varepsilon_{s}} x_{p o}{ }^{2} \\
\begin{array}{l}
\mathrm{P}=10^{18} \\
\mathrm{n}=10^{4}
\end{array}
\end{gathered}
$$

Hobonalogy

- If $V_{D}<0$ (reverse bias), Mount Everest becomes steeper
- Hordes of hobos at the bottom have a smaller chance of making it
- The few hobos at the top plummet like stones

Depletion Approx. - with $\mathrm{V}_{\mathrm{D}}>0$ forward bias

$$
\begin{aligned}
& \begin{array}{c}
\text { Built-in potential } \phi_{\mathrm{bi}}=\frac{q N_{d}}{2 \varepsilon_{s}} x_{n o}{ }^{2}+\frac{q N_{a}}{2 \varepsilon_{s}} x_{p o}{ }^{2}{ }^{\Psi}{ }^{\Psi 0(\wedge)} \\
\mathrm{P}=10^{18}
\end{array} \\
& \mathrm{n}=10^{4}
\end{aligned}
$$

 at the right places lead to large current!

Hobonalogy

- If $V_{D}<0$ (reverse bias), Mount Everest becomes a mere hillock
- Hordes of hobos at the bottom have a much better chance of accidentally ascending
- The few hobos at the top don't fall quite so rapidly

Forward Bias

- As V_{D} increases, the potential barrier to carrier diffusion across the junction decreases*, and current increases exponentially.

The carriers that diffuse across the junction become minority carriers in the quasi-neutral regions; they then
recombine with majority carriers,
"dying out" with distance.
$\boldsymbol{I}_{\boldsymbol{D}}$ (Amperes)

$$
I_{D}=I_{S}\left(e^{q V_{\mathrm{D}} / k T}-1\right)
$$

$\boldsymbol{V}_{\boldsymbol{D}}$ (Volts)

Reverse Bias

- As $\left|V_{D}\right|$ increases, the potential barrier to carrier diffusion across the junction increases*; thus, no carriers diffuse across the junction.

A very small amount of reverse current ($I_{D}<0$) does flow, due to minority carriers diffusing from the quasi-neutral regions into the depletion region and drifting across the junction.

$$
\boldsymbol{I}_{\boldsymbol{D}} \text { (Amperes) }
$$

Summary: pn-Junction Diode I-V

- Under forward bias, the potential barrier is reduced, so that carriers flow (by diffusion) across the junction
- Current increases exponentially with increasing forward bias
- The carriers become minority carriers once they cross the junction; as they diffuse in the quasi-neutral regions, they recombine with majority carriers (supplied by the metal contacts) "injection" of minority carriers
- Under reverse bias, the potential barrier is increased, so that negligible carriers flow across the junction
- If a minority carrier enters the depletion region (by thermal generation or diffusion from the quasi-neutral regions), it will be swept across the junction by the built-in electric field "collection" of minority carriers \rightarrow reverse current

Making a pn Junction Diode

Schematic diagram

Circuit symbol

Physical structure:

 (an example)For simplicity, assume that the doping profile changes abruptly at the junction.

More than one way to get current flowing

- Or there's more than one way to move hobos around mountains
- Electric field is the obvious way
- Can also create electron/hole pairs, for example, with light

Optoelectronic Diodes

- Light incident on a pn junction generates electron-hole pairs
- Carriers are generated in the depletion region as well as ndoped and p-doped quasi-neutral regions.
- Electron hole-pairs generated on the n and p sides will happen at about the same frequency, and therefore will cancel out

- Electron-hole pairs formed at the junction will:
- A. Result in no net current
- B. Result in a net current to the left
- C. Result in a net current to the right

Optoelectronic Diodes

- Electron-hole pairs formed at the junction will:
- Result in a net current to the p-side

- Solar cells are nothing but big photodiodes!
- Directly converts light into electricity

Open Photodiode

- If we leave our photocell open circuited, what happens?

- Voltage is generated

I-V Characteristic of Optoelectronic Diodes

$$
I_{D}=I_{S}\left(e^{q V_{\mathrm{D}} / k T}-1\right)-I_{\text {optical }}
$$

Photodiodes as Voltage Source and Current Source

- If we leave attach a very small resistor, does the solar cell act like a voltage source or a current source?
- A. Voltage source
-B. Current source

Photodiodes as Voltage Source and Current Source

- If we leave attach a very large resistor, the solar cell acts like a voltage source

That's all for today

- Next time
- Brief tiny look at MOSFET semiconductor physics (for ~ 5 minutes)
- Course overview
- Open Q\&A: Send me questions beforehand for better answers
- If somehow we aren't done at this point, l'll do a quick diode problem

Extra Slides

Design Problems

- ALL WORK MUST BE DONE COMPLETELY SOLO!
- Maximum allowed time will be 5 hours
- Will be written so that it can be completed in approximately 2 hours
- Allowed resources:
- May use any textbook (incl. Google Books)
- Anything posted on the EE40 website
- Only allowed websites are Google Books, wikipedia, and EE40 websites
- Not allowed to use other websites like facebook answers, yahoo answers, etc. even if you are reading other people's responses
- When in doubt, email me or text me
- We will be very serious about cheating on this!

Example: Photodiode

- An intrinsic region is placed between the p-type and n-type regions
-Goal is so that most of the electron-hole pairs are generated in the depletion region

Depletion Approximation 3

$$
\begin{aligned}
& \begin{aligned}
\phi_{0}(x) & =\int_{-x_{p o}}^{x}-E_{0}(x) d x+\phi_{0}\left(-x_{p o}\right)=\int_{-x_{p o}}^{x} \frac{q N_{a}}{\varepsilon_{s}}\left(x+x_{p o}\right) d x+0 \\
& =\frac{q N_{a}}{\varepsilon_{s}}\left(\int_{-x_{p o}}^{x} x d x+\int_{-x_{p o}}^{x} x_{p o} d x\right) \\
\phi_{0}(x) & =\frac{q N_{a}}{2 \varepsilon_{s}}\left(x+x_{p o}\right)^{2} \quad\left(-x_{p o}<x<0\right)
\end{aligned} \\
& \begin{aligned}
\phi_{0}(x) & =\int_{0}^{x}-E_{0}(x) d x+\phi_{0}(0)=\int_{0}^{x}-\frac{q N_{d}}{\varepsilon_{s}}\left(x-x_{n o}\right) d x+\frac{q N_{a}}{2 \varepsilon_{s}}\left(0+x_{p o}\right)^{2} \\
= & \frac{q N_{d}}{\varepsilon_{s}}\left(-\int_{0}^{x} x d x+\int_{0}^{x} x_{n o} d x\right)+\frac{q N_{a}}{2 \varepsilon_{s}} x_{p o}^{2} \\
\phi_{0}(x) & =\frac{q N_{d}}{2 \varepsilon_{s}} x\left(2 x_{n o}-x\right)^{2}+\frac{q N_{a}}{2 \varepsilon_{s}} x_{p o}^{2} \quad\left(0<x<x_{n o}\right)
\end{aligned}
\end{aligned}
$$

Depletion Approximation 1

$$
\begin{aligned}
& \rho_{0}(x) \approx\left\{\begin{array}{cc}
-q N_{a} & \left(-x_{p 0} \leq x \leq 0\right) \\
q N_{d} & \left(0 \leq x \leq x_{n 0}\right)
\end{array} \text { and } \rho_{0}(x)=0\left(x<-x_{p 0}, x>x_{n 0}\right)\right. \\
& E_{0}(x)=\frac{-q N_{a}}{\varepsilon_{s}}\left(x+x_{p o}\right) \quad\left(-x_{p o}<x<0\right) \\
& E_{0}(x)=\int_{x}^{x_{n o}} \frac{\rho_{0}(x)}{\varepsilon_{s}} d x-E_{0}\left(x_{n o}\right)=\frac{-q N_{d}}{\varepsilon_{s}}\left(x_{n o}-x\right)-0 \\
& E_{0}(x)=\frac{q N_{d}}{\varepsilon_{s}}\left(x-x_{n o}\right) \\
& \left(0<x<x_{n o}\right)
\end{aligned}
$$

