EE40 Lecture 2 Josh Hug

6/23/2010

Logistical Changes and Notes

- Friday Lunch is now Monday lunch (starting next Monday)
 - Email me by Saturday evening if you'd like to come: JHUG aat eecs.berkeley.edu
- My office hours will be Wednesday and Friday, 11:00-12:00, room TBA
- Google calendar with important dates now online
- Did anybody not get my email sent out Monday (that said no discussion yesterday)?
- Will curate the reading a little more carefully next time

Lab/HW Deadlines and Dates

- Discussions start Friday
- Labs start next Tuesday
- HW0 Due Today
- Homework 1 will be posted by 3PM, due Friday at 5 PM
- Tuesday homeworks now due at 2PM, not 5PM in Cory 240 HW box

Summary From Last Time

- *Current* = rate of charge flow
- **Voltage** = energy per unit charge created by charge separation
- *Power* = energy per unit time
- Ideal Basic Circuit Element
 - 2-terminal component that cannot be sub-divided
 - Described mathematically in terms of its terminal voltage and current

Circuit Schematics

- Networks of ideal basic circuit elements
- Equivalent to a set of algebraic equations
- Solution provides voltage and current through all
 EE40 Summer 2010

Heating Elements

- Last time we posed a question:
 - Given a fixed voltage, should we pick a thick or thin wire to maximize heat output
 - Note that resistance decreases with wire radius
- Most of you said that we'd want a thin wire to maximize heat output, why is that?
 - Believed that low resistance wire would give the most heat?
 - Didn't believe me that thick wire has low resistance?
 - General intuition?

Intuitive Answer

- I blasted through some equations and said "thicker is better, Q.E.D.", but I'm not sure you guys were convinced, so here's another view
- You can think of a big thick wire as a bunch of small wires connected to a source
 - The thicker the wire, the more little wires
 - Since they are all connected directly to the source, they all have same voltage and current and hence power
- Adding more wires gives us more total current flow (same voltage), and hence more power

Then Why Don't Toasters and Ovens Have Thicker Elements?

- Thicker elements mean hotter elements
 - Will ultimately reach higher max temperature
 - Will get to maximum faster [see message board after 6 or 7 PM tonight for why]
- Last time, you guys asked "Well if thickness gives you more heat, why aren't toaster elements thicker?"
- The answer is most likely:
 - More burned toast. Nobody likes burned toast.

Toaster Element Design Goals

- Make heating element that can:
 - Can reach a high temperature, but not too high
 - Can reach that temperature quickly
 - Isn't quickly oxidized into oblivion by high temperature
 - Doesn't cost very much money
 - Will not melt at desired temperature
- Nichrome is a typical metal alloy in elements:
 - Low oxidation
 - High resistance (so normal gauge wire will not draw too much power and get too hot)
- Size was tweaked to attain desired temperature

Continue the Discussion on BSpace

• Let's get working on some more complicated circuits than this:

Topic 2

Setting Up and Solving Resistive Circuit Models

Circuit Schematics

- Many circuit elements can be approximated as simple ideal two terminal devices or ideal basic circuit elements
- These elements can be combined into circuit schematics
- Circuit schematics can be converted into algebraic equations
- These algebraic equations can be solved, giving voltage and current through any element of the circuit

Today

- We'll enumerate the types of ideal basic circuit elements
- We'll more carefully define a circuit schematic
- We'll discuss some basic techniques for analyzing circuit schematics
 - Kirchoff's voltage and current laws
 - Current and voltage divider
 - Node voltage method

Circuit Elements

- There are 5 ideal basic circuit elements (in our course):
 - voltage source
 - current source
 - resistor
 - inductor
 - capacitor

active elements, capable of generating electric energy

passive elements, incapable of generating electric energy

- Many practical systems can be modeled with just sources and resistors
- The basic analytical techniques for solving circuits with inductors and capacitors are the same as those for resistive circuits

Electrical Sources

 An *electrical source* is a device that is capable of converting non-electric energy to electric energy and *vice versa*.

Examples:

- battery: chemical \longleftrightarrow electric
- dynamo (generator/motor): mechanical + electric

 \rightarrow Electrical sources can either deliver or absorb power

The Big Three

Circuit Schematics

- A circuit schematic is a diagram showing a set of interconnected circuit elements, e.g.
 - Voltage sources
 - Current sources
 - Resistors
- Each element in the circuit being modeled is represented by a symbol
- Lines connect the symbols, which you can think of as representing zero resistance wires

Terminology: Nodes and Branches

Node: A point where two or more circuit elements are connected – entire wire

Terminology: Nodes and Branches

Branch: A path that connects exactly two nodes

Terminology: Loops

- A *loop* is formed by tracing a closed path in a circuit through selected basic circuit elements without passing through any intermediate node more than once
- Example: (# nodes, # branches, # loops)

Kirchhoff's Laws

Kirchhoff's Current Law (KCL):

- The algebraic sum of all the currents at any node in a circuit equals zero.
- "What goes in, must come out"
- Basically, law of charge conservation

Using Kirchhoff's Current Law (KCL)

Often we're considering unknown currents and only have reference directions:

- $i_{2} \downarrow \qquad i_{3} \qquad \text{or} \\ i_{1}+i_{2}=i_{3}+i_{4} \\ i_{1}+i_{2}-i_{3}-i_{4}=0 \\ \text{or} \\ i_{4} \downarrow \qquad i_{4} = 0$
- Use reference directions to determine whether reference currents are said to be "entering" or "leaving" the node – with no concern about actual current directions

KCL Example

5+(-10)=15+i

i=-20mA

A Major Implication of KCL

- KCL tells us that all of the elements along a single uninterrupted^{*} path carry the same current
- We say these elements are connected *in series*.

Current entering node = Current leaving node

$$i_1 = i_2$$

*: To be precise, by uninterrupted path I mean all branches along the path connected EXACTLY two nodes

EE40 Summer 2010

Generalization of KCL

 The sum of currents entering/leaving a closed surface is zero. Circuit branches can be inside this surface, *i.e.* the surface can enclose more than one node!

This could be a big chunk of a circuit, *e.g.* a "black box"

Generalized KCL Examples

7μΑ

Kirchhoff's Laws

- Kirchhoff's Voltage Law (KVL):
 - The algebraic sum of all the voltages around any loop in a circuit equals zero.
 - "What goes up, must come down"

80=20+50+10

A Major Implication of KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

Applying KVL, we have that: $v_b - v_a = 0 \implies v_b = v_a$

KVL Example

Three closed paths:

Path 1: $V_a = V_2 + V_b$ If you want a mechanical rule:Path 2: $V_b + V_3 = V_c$ If you hit a - first, LHSPath 3: $V_a + V_3 = V_2 + V_c$

LHS is left hand side

An Underlying Assumption of KVL

- No time-varying magnetic flux through the loop Otherwise, there would be an induced voltage (Faraday's Law) Voltage around a loop would sum to a nonzero value
- <u>Note</u>: Antennas are designed to "pick up" electromagnetic waves; "regular circuits" often do so undesirably.

 $\vec{B}(t)$

How do we deal with antennas (EECS 117A)? Include a voltage source as the circuit representation of the induced voltage or "noise".

(Use a lumped model rather than a distributed (wave) model.)

- KCL tells us that all elements on an uninterrupted path have the same current.
 - We say they are "in series"
- KVL tells us that a set of elements whose terminals are connected at the same two nodes have the same voltage

- We say they are "in parallel"

Nonsense Schematics

• Just like equations, it is possible to write nonsense schematics:

- 1=7

 A schematic is nonsense if it violates KVL or KCL

Verifying KCL and KVL

Is this schematic valid? Yes

How much power is consumed/provided by each source?

Voltage source: $P_V = 5V * 20A = 100W$ (consumed)

Current source: P_I=-20A*5V=100W (provided)

Verifying KCL and KVL

KCL:

No contradiction

Top left node: $I_{100}=10A$ Top right node: 10A=5A+5ABottom node: $5A+5A=I_{100}$ KVL: Left loop: $100V=V_{10}+V_5$

Big loop: $100V = V_{10} + V_5$

Right loop: $V_5 = V_5$

No contradiction

Verifying KCL and KVL

Whatever we want that sums to 100V Multiple circuit solutions

iClicker #1

• Are these interconnections permissible?

A. Both are badB. Left is ok, right is badC. Left is bad, right is okD. Both are ok

On to Solving Circuits

- Next we'll talk about a general method for solving circuits
 - The book calls this the "basic method"
 - It's a naïve way of solving circuits, and is way more work than you need
 - Basic idea is to write every equation you can think of to write, then solve
 - However, it will build up our intuition for solving circuits, so let's start here
Solving Circuits (naïve way)

- Label every branch with a reference voltage and current
 - If two branches are in parallel, share voltage label
 - If in series, share same current label
- For each branch:
 - Write Ohm's law if resistor
 - Get branch voltage "for free" if known voltage source
 - Get branch current "for free" if known current source

Solving Circuits (naïve way)

- Label every branch with a reference voltage and current
 - If two branches are in parallel, share voltage label
 - If in series, share same current label
- For each branch:
 - Write Ohm's law if resistor
 - Get branch voltage "for free" if known voltage source
 - Get branch current "for free" if known current source
- For each node touching at least 2 reference currents:
 - Write KCL gives reference current relationships
 - Can omit nodes which contain no new currents
- For each loop:
 - Write KVL gives reference voltage relationships
 - Can omit loops which contain no new voltages

Could also call this the "kitchen sink" approach

Example: KCL and KVL applied to circuits

- Find the current through the resistor
- Use KVL, we see we can write:

• Now solving, we have:

 $5V = V_R + 3V \quad 2V = V_R \quad I_R = 2V/20\Omega = 0.1 \text{ Amps}$

Note: We had no node touching 2 ref currents, so no reference current relationships

Bigger example

Two nodes which touch two different reference currents:

$$i_g = i_a + 1.6$$

 $i_a + 1.6 = i_g$ [no new currents]

Three loops, but only one needed to touch all voltages:

$$V_{1} = V_{30} + V_{g}$$

$$V_{30} = 48V$$

$$i_{a} = 2.4A$$

$$V_{g} = 144V$$

$$i_{g} = 4A$$

5 equations5 unknowns

iClicker Proof

 How many KCL and KVL equations will we need to cover every branch voltage and branch current?

2 KVL, 1 KCL

Top node: $I_1 = I_2 + I_3$ Bottom node: $I_3 + I_2 = I_1$ I_1 I_2 I_2 I_2 I_2 I_2 I_2 I_3 I_2 I_3 I_2 I_3 I_2 I_3 I_3

EE40 Summer 2010

There are better ways to solve circuits

- The kitchen sink method works, but we can do better
 - Current divider
 - Voltage divider
 - Lumping series and parallel elements together (circuit simplification)
 - Node voltage

Voltage Divider

- Voltage divider
 - Special way to handle N resistors in series
 - Tells you how much voltage each resistor consumes
 - Given a set of N resistors R₁,...,R_k,..., R_N in series with total voltage drop V, the voltage through R_k is given by

$$V_k = V \frac{R_k}{R_1 + R_2 + \dots + R_k + \dots + R_n}$$

Or more compactly: $V_k = \frac{VR_k}{\sum_{i=1}^N R_i}$

Can prove with kitchen sink method (see page 78)

Voltage Divider Example

$$V_k = V \frac{R_k}{R_1 + R_2 + \dots + R_k + \dots + R_n}$$

And likewise for other resistors

Current Divider

- Current divider
 - Special way to handle N resistors in parallel
 - Tells you how much current each resistor consumes
 - Given a set of N resistors R₁,...,R_k,..., R_N in parallel with total current I the current through R_k is given by

$$I_k = I \frac{G_k}{G_1 + G_2 + \dots + G_k + \dots + G_n} \qquad \text{Where:} \quad G_p = \frac{1}{R_p}$$

We call G_p the conductance of a resistor, in units of Mhos (\mho) -Sadly, not units of Shidnevacs (C)

http://www.elsevierdirect.com/companions/9781558607354/casestudies/02~Chapter_2/Example_2_20.pdf)

EE40 Summer 2010

Can prove with kitchen sink method (see

Current Divider Example

Conductances are:

1/5Ω=0.2℧ 1/10Ω=0.1℧ 1/5Ω=0.2℧ 1/2Ω=0.5℧

Sum of conductances is 1^v (convenient!)

Current through 5Ω resistor is:

$$I_2 = 20A \frac{0.2}{1} = 4A$$

Circuit Simplification

- Next we'll talk about some tricks for combining multiple circuit elements into a single element
- Many elements in series → One single element
- Many elements in parallel → One single element

Circuit Simplification Example Combining Voltage Sources

- KVL trivially shows voltage across resistor is 15 V
- Can form equivalent circuit as long as we don't care about individual source behavior
 - For example, if we want power provided by each source, we have to look at the original circuit

Example – Combining Resistances

 Can use kitchen sink method or voltage divider method to show that current provided by the source is equivalent in the two circuits below

Source Combinations

- Voltage sources in series combine additively
- Voltage sources in parallel
 - This is like crossing the streams "Don't cross the streams"
 - Mathematically nonsensical if the voltage sources are not exactly equal
- Current sources in parallel combine additively
- Current sources in series is bad if not the same current

Resistor Combinations

Resistors in series combine additively

$$R_{eq} = R_1 + R_2 + \dots + R_N$$

• Resistors in parallel combine weirdly

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

– More natural with conductance:

$$G_{eq} = G_1 + G_2 + \dots + G_n$$

• N resistors in parallel with the same resistance R have equivalent resistance $R_{eq}=R/N$

Algorithm For Solving By Combining Circuit Elements

- Check circuit diagram
 - If two or more elements of same type in series
 - Combine using series rules
 - If two or more elements of same type in parallel
 - Combine using parallel rules
- If we combined anything, go back to
- If not, then solve using appropriate method (kitchen sink if complicated, divider rule if possible)

Are there any circuit elements in parallel?

No!

Are there any circuit elements in series?

Yes!

Are there any circuit elements in parallel?

Yes!

Are there any circuit elements in series?

Yes!

Are there any circuit elements in parallel?

Yes!

Are there any circuit elements in series?

No!

Example: Find I

Are there any circuit elements in parallel?

Yes!

Are there any circuit elements in series?

No!

Example: Find I

Are there any circuit elements in parallel?

No!

Are there any circuit elements in series?

Yes!

Example: Find I

Are there any circuit elements in parallel?

No!

Are there any circuit elements in series?

No!

$I=30V/30\Omega=1A$

Working Backwards

- Assume we've combined several elements to understand large scale behavior
- Now suppose we want to know something about one of those circuit elements that we've combined
 - For example, current through a resistor that has been combined into equivalent resistance
- We undo our combinations step by step
 - At each step, use voltage and current divider tricks
 - Only undo enough so that we get the data we want

Working Backwards Example

Suppose we want to know the voltage across the 40Ω Resistor

Starting from here...

We back up one step... $V_{25}=I*25\Omega=25V$

Then another...

Now we can use the voltage divider rule, and get

$$V_{40} = \frac{40\Omega}{10\Omega + 40\Omega} 25V \qquad V_{40} = 20V$$

Now we can use the voltage divider rule, and get

$$V_{40} = \frac{40\Omega}{10\Omega + 40\Omega} 25V \qquad V_{40} = 20V$$

Equivalent Resistance Between Two Terminals

- We often want to find the equivalent resistance of a network of resistors with no source attached $\downarrow 10\Omega$ $\downarrow 10\Omega$
- Tells us the resistance that a hypothetical source would "see" if it were connected
 - e.g. In this example, the resistance that provides the correct source current

Equivalent Resistance Between Two Terminals

- Pretend there is a source of some kind between the circuits
- Perform the parallel/series combination algorithm as before

Can Pick Other Pairs of Terminals

These resistors do nothing (except maybe confuse us)

There are better ways to solve circuits

- The kitchen sink method works, but we can do better
 - Current divider
 - Voltage divider
 - Lumping series and parallel elements together (circuit simplification)
 - Node voltage

The Node Voltage Technique

- We'll next talk about a general technique that will let you convert a circuit schematic with N nodes into a set of N-1 equations
- These equations will allow you to solve for every single voltage and current
- Works on any circuit, linear or nonlinear!
- Much more efficient than the kitchen sink

Definition: Node Voltage and Ground Node

- Remember that voltages are always defined in terms of TWO points in a circuit
- It is convenient to label one node in our circuit the "Ground Node"
 - Any node can be "ground", it doesn't matter which one you pick
- Once we have chosen a ground node, we say that each node has a "node voltage", which is the voltage between that node and the arbitrary ground node
- Gives each node a universal single valued voltage level

Node Voltage Example

- Pick a ground, say the bottom left node.
- Label nodes a, b, c, d. Node voltages are:

 $-V_d$ =voltage between node d and d=0V

- V_c =voltage between node c and d= V_{10} =20V
- V_b =voltage between node b and d= $V_{85}+V_{10}$ =190V
- V_a=voltage between node a and d=200V
iClicker #4: Node Voltages

$$V_5 = 10V$$

 $V_{85} = 170V$
 $V_{10} = 20V$

What is V_a ?

- A. 200V
- B. 20V
- C. 160V
- D. 180V

 $V_a = V_5 + V_{85} = 180V$

Relationship: Node and Branch Voltages

- Node voltages are useful because:
 - The branch voltage across a circuit element is simply the difference between the node voltages at its terminals
 - It is easier to find node voltages than branch voltages

Why are Node Voltages Easier to Find?

- KCL is easy to write in terms of node voltages
- For example, at node a:
 - $4A = V_a / 80\Omega + (V_a V_b) / 30\Omega$
- And at node b:
 - $(V_{b}-V_{a})/30\Omega=V_{b}/90\Omega$
- Well look, two equations, two unknowns. We're done.
- Better than 5 equations, 5 unknowns with kitchen sink method EE40 Summer 2010

(Almost) The Node Voltage Method

- Assign a ground node
- For every node except the ground node, write the equation given by KCL in terms of the node voltages
 - Be very careful about reference directions
- This gives you a set of N-1 linearly independent algebraic equations in N-1 unknowns
 - Solvable using whatever technique you choose

What about Voltage Sources?

Suppose we have the circuit below

- When we try to write KCL at node a, what happens?
- How do we get around this?

– Write fixed node voltage relationship:

$$V_a = V_d + 200$$

Full Node Voltage Method

- Assign a ground node
- For every node (except the ground node):
 - If there is no voltage source connected to that node, then write the equation given by KCL in terms of the node voltages
 - If there is a voltage source connecting two nodes, write down the simple equation giving the difference between the node voltages
 - Be very careful about reference directions (comes with practice)
- This gives you a set of N-1 linearly independent algebraic equations in N-1 unknowns
- Solvable using whatever technique you choose **More Examples Next Time!** EE40 Summer 2010

Next Class

- Node voltage practice and examples
- Why we are bothering to understand so deeply the intricacies of purely resistive networks
 - Things we can build other than the most complicated possible toaster
- How we actually go about measuring voltages and currents
- More circuit tricks
 - Superposition
 - Source transformations

Quick iClicker Question

- How was my pacing today?
 - A. Way too slow
 - B. A little too slow
 - C. Pretty good
 - D. Too fast
 - E. Way too fast

Extra Slides

Summary (part one)

- There are five basic circuit elements
 - Voltage Sources
 - Current Sources
 - Resistors
 - Capacitors
 - Inductors
- Circuit schematics are a set of interconnect ideal basic circuit elements
- A connection point between elements is a node, and a path that connects two nodes is a branch
- A loop is a path around a circuit which starts and ends at the same node without going through any circuit element twice

Summary (part two)

- Kirchoff's current law states that the sum of the currents entering a node is zero
- Kirchoff's voltage law states that the sum of the voltages around a loop is zero
- From these laws, we can derive rules for combining multiple sources or resistors into a single equivalent source or resistor
- The current and voltage divider rules are simple tricks to solve simple circuits
- The node voltage technique provides a general framework for solving any circuit using the elements we've used so far

Short Circuit and Open Circuit

<u>Wire</u> ("short circuit"):

- *R* = 0 → no voltage difference exists
 (all points on the wire are at the same potential)
- Current can flow, as determined by the circuit

<u>Air</u> ("open circuit"):

- $R = \infty \rightarrow$ no current flows
- Voltage difference can exist, as determined by the circuit

Ideal Voltage Source

- Circuit element that maintains a prescribed voltage across its terminals, regardless of the current flowing in those terminals.
 - Voltage is known, but current is determined by the circuit to which the source is connected.
- The voltage can be either **independent or dependent** on a voltage or current elsewhere in the circuit, and can be constant or time-varying.

Circuit symbols:

voltage-controlled

current-controlled

Ideal Current Source

- Circuit element that maintains a prescribed current through its terminals, regardless of the voltage across those terminals.
 - Current is known, but voltage is determined by the circuit to which the source is connected.
- The current can be either **independent or dependent** on a voltage or current elsewhere in the circuit, and can be constant or time-varying.

Circuit symbols:

voltage-controlled

current-controlled