EE40
 Lecture 2 Josh Hug

6/23/2010

Logistical Changes and Notes

- Friday Lunch is now Monday lunch (starting next Monday)
- Email me by Saturday evening if you'd like to come: JHUG aat eecs.berkeley.edu
- My office hours will be Wednesday and Friday, 11:00-12:00, room TBA
- Google calendar with important dates now online
- Did anybody not get my email sent out Monday (that said no discussion yesterday)?
- Will curate the reading a little more carefully next time

Lab/HW Deadlines and Dates

- Discussions start Friday
- Labs start next Tuesday
- HWO Due Today
- Homework 1 will be posted by 3PM, due Friday at 5 PM
- Tuesday homeworks now due at 2PM, not 5PM in Cory 240 HW box

Summary From Last Time

- Current = rate of charge flow
- Voltage = energy per unit charge created by charge separation
- Power = energy per unit time
- Ideal Basic Circuit Element
- 2-terminal component that cannot be sub-divided
- Described mathematically in terms of its terminal voltage and current
- Circuit Schematics
- Networks of ideal basic circuit elements
- Equivalent to a set of algebraic equations
- Solution provides voltage and current through all eelements of the circuit

Heating Elements

- Last time we posed a question:
- Given a fixed voltage, should we pick a thick or thin wire to maximize heat output
- Note that resistance decreases with wire radius
- Most of you said that we'd want a thin wire to maximize heat output, why is that?
- Believed that low resistance wire would give the most heat?
- Didn't believe me that thick wire has low resistance?
- General intuition?

Intuitive Answer

- I blasted through some equations and said "thicker is better, Q.E.D.", but I'm not sure you guys were convinced, so here's another view
- You can think of a big thick wire as a bunch of small wires connected to a source
- The thicker the wire, the more little wires
- Since they are all connected directly to the source, they all have same voltage and current and hence power
- Adding more wires gives us more total current flow (same voltage), and hence more power

Then Why Don't Toasters and Ovens Have Thicker Elements?

- Thicker elements mean hotter elements
- Will ultimately reach higher max temperature
- Will get to maximum faster [see message board after 6 or 7 PM tonight for why]
- Last time, you guys asked "Well if thickness gives you more heat, why aren't toaster elements thicker?"
- The answer is most likely:
- More burned toast. Nobody likes burned toast.

Toaster Element Design Goals

- Make heating element that can:
- Can reach a high temperature, but not too high
- Can reach that temperature quickly
- Isn't quickly oxidized into oblivion by high temperature
- Doesn't cost very much money
- Will not melt at desired temperature
- Nichrome is a typical metal alloy in elements:
- Low oxidation
- High resistance (so normal gauge wire will not draw too much power and get too hot)
- Size was tweaked to attain desired temperature

Continue the Discussion on BSpace

- Let's get working on some more complicated circuits than this:

Topic 2

Setting Up and Solving Resistive Circuit Models

Circuit Schematics

- Many circuit elements can be approximated as simple ideal two terminal devices or ideal basic circuit elements
- These elements can be combined into circuit schematics
- Circuit schematics can be converted into algebraic equations
- These algebraic equations can be solved, giving voltage and current through any element of the circuit

Today

- We'll enumerate the types of ideal basic circuit elements
- We'll more carefully define a circuit schematic
- We'll discuss some basic techniques for analyzing circuit schematics
- Kirchoff's voltage and current laws
- Current and voltage divider
- Node voltage method

Circuit Elements

- There are 5 ideal basic circuit elements (in our course):
- voltage source
- current source
- resistor
- inductor
- capacitor

- Many practical systems can be modeled with just sources and resistors
- The basic analytical techniques for solving circuits with inductors and capacitors are the same as those for resistive circuits

Electrical Sources

- An electrical source is a device that is capable of converting non-electric energy to electric energy and vice versa.
Examples:
- battery: chemical \longrightarrow electric
- dynamo (generator/motor): mechanical \longrightarrow electric
\rightarrow Electrical sources can either deliver or absorb power

The Big Three

Constant current, unknown voltage

Circuit Schematics

- A circuit schematic is a diagram showing a set of interconnected circuit elements, e.g.
- Voltage sources
- Current sources
- Resistors
- Each element in the circuit being modeled is represented by a symbol
- Lines connect the symbols, which you can think of as representing zero resistance wires

Terminology: Nodes and Branches

Node: A point where two or more circuit elements are connected - entire wire

Terminology: Nodes and Branches

Branch: A path that connects exactly two nodes

Not a branch

Terminology: Loops

- A loop is formed by tracing a closed path in a circuit through selected basic circuit elements without passing through any intermediate node more than once
- Example: (\# nodes, \# branches, \# loops)

6 nodes
 7 branches
 3 loops

Kirchhoff's Laws

- Kirchhoff's Current Law (KCL):
- The algebraic sum of all the currents at any node in a circuit equals zero.
- "What goes in, must come out"
- Basically, law of charge conservation

Using Kirchhoff's Current Law (KCL)

Often we're considering unknown currents and only have reference directions:

$$
\begin{aligned}
& i_{1}+i_{2}=i_{3}+i_{4} \\
& \text { or } \\
& i_{1}+i_{2}-i_{3}-i_{4}=0 \\
& \text { or } \\
& -i_{1}-i_{2}+i_{3}+i_{4}=0
\end{aligned}
$$

- Use reference directions to determine whether reference currents are said to be "entering" or "leaving" the node - with no concern about actual current directions

KCL Example

A Major Implication of KCL

- KCL tells us that all of the elements along a single uninterrupted* path carry the same current
- We say these elements are connected in series.

Current entering node $=$ Current leaving node

$$
i_{1}=i_{2}
$$

*: To be precise, by uninterrupted path I mean all branches along the path connected EXACTLY two nodes

Generalization of KCL

- The sum of currents entering/leaving a closed surface is zero. Circuit branches can be inside this surface, i.e. the surface can enclose more than one node!

This could be a big chunk of a circuit, e.g. a "black box"

Generalized KCL Examples

$7 \mu \mathrm{~A}$

Kirchhoff's Laws

- Kirchhoff's Voltage Law (KVL):
- The algebraic sum of all the voltages around any loop in a circuit equals zero.
- "What goes up, must come down"

A Major Implication of KVL

- KVL tells us that any set of elements which are connected at both ends carry the same voltage.
- We say these elements are connected in parallel.

Applying KVL, we have that:

$$
v_{b}-v_{a}=0 \quad \Rightarrow \quad v_{b}=v_{a}
$$

KVL Example

Three closed paths:

Path 1: $\quad \mathrm{V}_{\mathrm{a}}=\mathrm{V}_{2}+\mathrm{V}_{\mathrm{b}}$
Path 2: $\quad V_{b}+V_{3}=V_{c}$
If you want a mechanical rule: If you hit a - first, LHS
If you hit a + first, RHS
Path 3: $\quad V_{a}+V_{3}=V_{2}+V_{c}$
LHS is left hand side

An Underlying Assumption of KVL

- No time-varying magnetic flux through the loop

Otherwise, there would be an induced voltage (Faraday's Law)
Voltage around a loop would sum to a nonzero value

- Note: Antennas are designed to "pick up" electromagnetic waves; "regular circuits" often do so undesirably.

How do we deal with antennas (EECS 117A)?
Include a voltage source as the circuit representation of the induced voltage or "noise".
(Use a lumped model rather than a distributed (wave) model.)

Mini-Summary

- KCL tells us that all elements on an uninterrupted path have the same current.
- We say they are "in series"
- KVL tells us that a set of elements whose terminals are connected at the same two nodes have the same voltage - We say they are "in parallel"

Nonsense Schematics

- Just like equations, it is possible to write nonsense schematics:
- 1=7
- A schematic is nonsense if it violates KVL or KCL

Verifying KCL and KVL

Is this schematic valid? Yes

How much power is consumed/provided by each source?
Voltage source: $\mathrm{P}_{\mathrm{V}}=5 \mathrm{~V} * 20 \mathrm{~A}=100 \mathrm{~W}$ (consumed)
Current source: $\mathrm{P}_{\mathrm{I}}=-20 \mathrm{~A} * 5 \mathrm{~V}=100 \mathrm{~W}$ (provided)

Verifying KCL and KVL

KCL:
Top left node: $\quad \mathrm{I}_{100}=10 \mathrm{~A}$
Top right node: $\quad 10 \mathrm{~A}=5 \mathrm{~A}+5 \mathrm{~A}$
Bottom node: $\quad 5 \mathrm{~A}+5 \mathrm{~A}=\mathrm{I}_{100}$
KVL:
Left loop: $\quad 100 \mathrm{~V}=\mathrm{V}_{10}+\mathrm{V}_{5}$
Right loop: $\mathrm{V}_{5}=\mathrm{V}_{5}$
Big loop: $\quad 100 \mathrm{~V}=\mathrm{V}_{10}+\mathrm{V}_{5}$

Is this valid? Yes

No contradiction

No contradiction

Verifying KCL and KVL

Top left node: $\quad I_{100}=10 \mathrm{~A}$
KVL:
2 equations
3 unknowns

iClicker \#1

- Are these interconnections permissible?

A. Both are bad
B. Left is ok, right is bad

C. Left is bad, right is ok
D. Both are ok

On to Solving Circuits

- Next we'll talk about a general method for solving circuits
- The book calls this the "basic method"
- It's a naïve way of solving circuits, and is way more work than you need
- Basic idea is to write every equation you can think of to write, then solve
- However, it will build up our intuition for solving circuits, so let's start here

Solving Circuits (naïve way)

- Label every branch with a reference voltage and current
- If two branches are in parallel, share voltage label
- If in series, share same current label
- For each branch:
- Write Ohm's law if resistor
- Get branch voltage "for free" if known voltage source
- Get branch current "for free" if known current source

Solving Circuits (naïve way)

- Label every branch with a reference voltage and current
- If two branches are in parallel, share voltage label
- If in series, share same current label
- For each branch:
- Write Ohm's law if resistor
- Get branch voltage "for free" if known voltage source
- Get branch current "for free" if known current source
- For each node touching at least 2 reference currents:
- Write KCL - gives reference current relationships
- Can omit nodes which contain no new currents
- For each loop:
- Write KVL - gives reference voltage relationships
- Can omit loops which contain no new voltages

Example: KCL and KVL applied to circuits

- Find the current through the resistor
- Use KVL, we see we can write:

$$
\begin{aligned}
\mathrm{V}_{1} & =\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{2} \\
\mathrm{~V}_{1} & =5 \mathrm{~V} \\
\mathrm{~V}_{2} & =3 \mathrm{~V} \\
\mathrm{I}_{\mathrm{R}} & =\mathrm{V}_{\mathrm{R}} / 20 \Omega \\
& 4 \text { equations } \\
& 4 \text { "unknowns" }
\end{aligned}
$$

- Now solving, we have:

$$
5 \mathrm{~V}=\mathrm{V}_{\mathrm{R}}+3 \mathrm{~V} \quad 2 \mathrm{~V}=\mathrm{V}_{\mathrm{R}} \quad \mathrm{I}_{\mathrm{R}}=2 \mathrm{~V} / 20 \Omega=0.1 \mathrm{Amps}
$$

Note: We had no node touching 2 ref currents, so no reference current relationships

Bigger example

Two nodes which touch two different reference currents:

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{g}}=\mathrm{i}_{\mathrm{a}}+1.6 \\
& \mathrm{i}_{\mathrm{a}}+1.6=\mathrm{i}_{\mathrm{g}} \quad \text { [no new currents] }
\end{aligned}
$$

Three loops, but only one needed to touch all voltages:

$$
\begin{array}{cl}
\mathrm{V}_{1}=\mathrm{V}_{30}+\mathrm{V}_{\mathrm{g}} & \\
\mathrm{~V}_{30}=48 \mathrm{~V} & \mathrm{i}_{\mathrm{a}}=2.4 \mathrm{~A} \\
\mathrm{~V}_{\mathrm{g}}=144 \mathrm{~V} & \mathrm{i}_{\mathrm{g}}=4 \mathrm{~A}
\end{array}
$$

5 equations
5 unknowns

$$
\mathrm{V}_{1}^{5}=192 \mathrm{~V}
$$

iClicker \#2

- How many KCL and KVL equations will we need to cover every branch voltage and branch current?
A. 2 KVL loops, 2 KCL nodes
B. 3 KVL loops, 2 KCL nodes
C. 2 KVL loops, 4 KCL nodes
D. 3 KVL loops, 4 KCL nodes
E. None of these

I am the worst
2 KVL, 1 KCL

iClicker Proof

- How many KCL and KVL equations will we need to cover every branch voltage and branch current?

2 KVL, 1 KCL
Top node:
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}$
Bottom node:
$\mathrm{I}_{3}+\mathrm{I}_{2}=\mathrm{I}_{1}$

There are better ways to solve circuits

- The kitchen sink method works, but we can do better
- Current divider
- Voltage divider
- Lumping series and parallel elements together (circuit simplification)
- Node voltage

Voltage Divider

- Voltage divider
- Special way to handle N resistors in series
- Tells you how much voltage each resistor consumes
- Given a set of N resistors $R_{1}, \ldots, R_{k}, \ldots, R_{N}$ in series with total voltage drop \mathbf{V}, the voltage through R_{k} is given by

$$
V_{k}=V \frac{R_{k}}{R_{1}+R_{2}+\cdots+R_{k}+\cdots R_{n}}
$$

Or more compactly: $\quad V_{k}=\frac{V R_{k}}{\sum_{i=1}^{N} R_{i}}$

Can prove with kitchen sink method (see page 78)

Voltage Divider Example

$$
V_{k}=V \frac{R_{k}}{R_{1}+R_{2}+\cdots+R_{k}+\cdots R_{n}}
$$

And likewise for other resistors

Current Divider

- Current divider
- Special way to handle N resistors in parallel
- Tells you how much current each resistor consumes
- Given a set of N resistors $R_{1}, \ldots, R_{k}, \ldots, R_{N}$ in parallel with total current I the current through R_{k} is given by

$$
I_{k}=I \frac{G_{k}}{G_{1}+G_{2}+\cdots+G_{k}+\cdots G_{n}} \quad \text { Where: } \quad G_{p}=\frac{1}{R_{p}}
$$

We call G_{p} the conductance of a resistor, in units of Mhos ($(\mathcal{)}$)
-Sadly, not units of Shidnevacs
Can prove with kitchen sink method (see
http://www.elsevierdirect.com/companions/9781558607354/casestudies/02~Chapter_2/Example 2_20.pdf)

Current Divider Example

5Ω

20A

Conductances are:

$$
\begin{aligned}
& 1 / 5 \Omega=0.2 \mho \\
& 1 / 10 \Omega=0.1 \mho \\
& 1 / 5 \Omega=0.2 \mho \\
& 1 / 2 \Omega=0.5 \mho
\end{aligned}
$$

Sum of conductances is $1 \mho$ (convenient!)

Current through 5Ω resistor is:

$$
I_{2}=20 A \frac{0.2}{1}=4 A
$$

Circuit Simplification

- Next we'll talk about some tricks for combining multiple circuit elements into a single element
- Many elements in series \rightarrow One single element
- Many elements in parallel \rightarrow One single element

Circuit Simplification Example Combining Voltage Sources

- KVL trivially shows voltage across resistor is 15 V
- Can form equivalent circuit as long as we don't care about individual source behavior
- For example, if we want power provided by each source, we have to look at the original circuit

Example - Combining Resistances

- Can use kitchen sink method or voltage divider method to show that current provided by the source is equivalent in the two circuits below

Source Combinations

- Voltage sources in series combine additively
- Voltage sources in parallel
- This is like crossing the streams - "Don't cross the streams"
- Mathematically nonsensical if the voltage sources are not exactly equal
- Current sources in parallel combine additively
- Current sources in series is bad if not the same current

Resistor Combinations

- Resistors in series combine additively

$$
R_{e q}=R_{1}+R_{2}+\cdots+R_{N}
$$

- Resistors in parallel combine weirdly

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}
$$

- More natural with conductance:

$$
G_{e q}=G_{1}+G_{2}+\cdots+G_{n}
$$

- N resistors in parallel with the same resistance R have equivalent resistance $R_{\text {eq }}=R / N$

Algorithm For Solving By Combining Circuit Elements

- Check circuit diagram
- If two or more elements of same type in series
- Combine using series rules
- If two or more elements of same type in parallel
- Combine using parallel rules
- If we combined anything, go back to
- If not, then solve using appropriate method (kitchen sink if complicated, divider rule if possible)

iClicker \#3: Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?
A. $\mathrm{I}=32.94 \mathrm{~A}$
D. $\mathrm{I}=0.22 \mathrm{~A}$
B. $\mathrm{I}=2 \mathrm{~A}$
C. $\mathrm{I}=1 \mathrm{~A}$

Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?
No!

Are there any circuit elements in parallel?

Yes!

Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?
Yes!

Are there any circuit elements in parallel?

Yes!

Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?
No!

Are there any circuit elements in parallel?

Yes!

Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?

No!

Are there any circuit elements in parallel?

Yes!

Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?
No!

Are there any circuit elements in parallel?

No!

Using Equivalent Resistances

Example: Find I

Are there any circuit elements in parallel?

No!

Are there any circuit elements in parallel?

No!
$\mathrm{I}=30 \mathrm{~V} / 30 \Omega=1 \mathrm{~A}$

Working Backwards

- Assume we've combined several elements to understand large scale behavior
- Now suppose we want to know something about one of those circuit elements that we've combined
- For example, current through a resistor that has been combined into equivalent resistance
- We undo our combinations step by step
- At each step, use voltage and current divider tricks
- Only undo enough so that we get the data we want

Working Backwards Example

- Suppose we want to know the voltage across the 40Ω Resistor

Using Equivalent Resistances

$\mathrm{l}=1 \mathrm{Amp}$

Starting from here...

Using Equivalent Resistances

$\mathrm{I}=1 \mathrm{Amp}$

We back up one step...
$\mathrm{V}_{25}=\mathrm{I} * 25 \Omega=25 \mathrm{~V}$

Then another...

Using Equivalent Resistances

$\mathrm{l}=1 \mathrm{Amp}$

We back up one step...
$\mathrm{V}_{25}=\mathrm{I} * 25 \Omega=25 \mathrm{~V}$

Then another...
Then one more...

Using Equivalent Resistances

$\mathrm{l}=1 \mathrm{Amp}$

We back up one step...
$\mathrm{V}_{25}=\mathrm{I} * 25 \Omega=25 \mathrm{~V}$

Then another...
Then one more...

Now we can use the voltage divider rule, and get

$$
V_{40}=\frac{40 \Omega}{10 \Omega+40 \Omega} 25 \mathrm{~V} \quad V_{40}=20 \mathrm{~V}
$$

Using Equivalent Resistances

We back up one step...
l=1 Amp
$\mathrm{V}_{25}=\mathrm{I} * 25 \Omega=25 \mathrm{~V}$

Then another...
Then one more...

Now we can use the voltage divider rule, and get

$$
V_{40}=\frac{40 \Omega}{10 \Omega+40 \Omega} 25 \mathrm{~V} \quad V_{40}=20 \mathrm{~V}
$$

Equivalent Resistance Between Two Terminals

- We often want to find the equivalent resistance of a network of resistors with no source attached 10Ω

- Tells us the resistance that a hypothetical source would "see" if it were connected
- e.g. In this example, the resistance that provides the correct source current

Equivalent Resistance Between Two Terminals

- Pretend there is a source of some kind between the circuits
- Perform the parallel/series combination algorithm as before

Can Pick Other Pairs of Terminals

These resistors do nothing
(except maybe confuse us)

Combine these
 parallel resistors

There are better ways to solve circuits

- The kitchen sink method works, but we can do better
- Current divider
- Voltage divider
- Lumping series and parallel elements together (circuit simplification)
- Node voltage

The Node Voltage Technique

- We'll next talk about a general technique that will let you convert a circuit schematic with N nodes into a set of N -1 equations
- These equations will allow you to solve for every single voltage and current
- Works on any circuit, linear or nonlinear!
- Much more efficient than the kitchen sink

Definition: Node Voltage and Ground Node

- Remember that voltages are always defined in terms of TWO points in a circuit
- It is convenient to label one node in our circuit the "Ground Node"
- Any node can be "ground", it doesn't matter which one you pick
- Once we have chosen a ground node, we say that each node has a "node voltage", which is the voltage between that node and the arbitrary ground node
- Gives each node a universal single valued voltage level

Node Voltage Example

$$
\begin{aligned}
& V_{5}=10 \mathrm{~V} \\
& \mathrm{~V}_{85}=170 \mathrm{~V} \\
& \mathrm{~V}_{10}=20 \mathrm{~V}
\end{aligned}
$$

- Pick a ground, say the bottom left node.
- Label nodes a, b, c, d. Node voltages are:
$-V_{d}=$ voltage between node d and $d=0 \mathrm{~V}$
$-V_{c}=$ voltage between node c and $d=V_{10}=20 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{b}}=$ voltage between node b and $\mathrm{d}=\mathrm{V}_{85}+\mathrm{V}_{10}=190 \mathrm{~V}$
$-V_{a}=$ voltage between node a and $d=200 \mathrm{~V}$

iClicker \#4: Node Voltages

$$
\begin{aligned}
& \mathrm{V}_{5}=10 \mathrm{~V} \\
& \mathrm{~V}_{85}=170 \mathrm{~V} \\
& \mathrm{~V}_{10}=20 \mathrm{~V}
\end{aligned}
$$

What is V_{a} ?
A. 200 V

$$
V_{a}=V_{5}+V_{85}=180 \mathrm{~V}
$$

B. 20 V
C. 160 V
D. 180 V

Relationship: Node and Branch Voltages

- Node voltages are useful because:
- The branch voltage across a circuit element is simply the difference between the node voltages at its terminals
- It is easier to find node voltages than branch voltages

Example:

Why are Node Voltages Easier to Find?

- KCL is easy to write in terms of node voltages
- For example, at node a:
- $4 \mathrm{~A}=\mathrm{V}_{\mathrm{a}} / 80 \Omega+\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right) / 30 \Omega$
- And at node b:
- $\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}\right) / 30 \Omega=\mathrm{V}_{\mathrm{b}} / 90 \Omega$
- Well look, two equations, two unknowns. We're done.
- Better than 5 equations, 5 unknowns with kitchen sink method

(Almost) The Node Voltage Method

- Assign a ground node
- For every node except the ground node, write the equation given by KCL in terms of the node voltages
- Be very careful about reference directions
- This gives you a set of N-1 linearly independent algebraic equations in $\mathrm{N}-1$ unknowns
- Solvable using whatever technique you choose

What about Voltage Sources?

- Suppose we have the circuit below

- When we try to write KCL at node a, what happens?
- How do we get around this?
- Write fixed node voltage relationship:

$$
V_{a}=V_{d}+200
$$

Full Node Voltage Method

- Assign a ground node
- For every node (except the ground node):
- If there is no voltage source connected to that node, then write the equation given by KCL in terms of the node voltages
- If there is a voltage source connecting two nodes, write down the simple equation giving the difference between the node voltages
- Be very careful about reference directions (comes with practice)
- This gives you a set of $\mathrm{N}-1$ linearly independent algebraic equations in $\mathrm{N}-1$ unknowns
- Solvable using whatever technique you choose More Examples Next Time!

Next Class

- Node voltage practice and examples
- Why we are bothering to understand so deeply the intricacies of purely resistive networks
- Things we can build other than the most complicated possible toaster
- How we actually go about measuring voltages and currents
- More circuit tricks
- Superposition
- Source transformations

Quick iClicker Question

- How was my pacing today?
A. Way too slow
B. A little too slow
C. Pretty good
D. Too fast
E. Way too fast

Extra Slides

Summary (part one)

- There are five basic circuit elements
- Voltage Sources
- Current Sources
- Resistors
- Capacitors
- Inductors
- Circuit schematics are a set of interconnect ideal basic circuit elements
- A connection point between elements is a node, and a path that connects two nodes is a branch
- A loop is a path around a circuit which starts and ends at the same node without going through any circuit element twice

Summary (part two)

- Kirchoff's current law states that the sum of the currents entering a node is zero
- Kirchoff's voltage law states that the sum of the voltages around a loop is zero
- From these laws, we can derive rules for combining multiple sources or resistors into a single equivalent source or resistor
- The current and voltage divider rules are simple tricks to solve simple circuits
- The node voltage technique provides a general framework for solving any circuit using the elements we've used so far

Short Circuit and Open Circuit

Wire ("short circuit"):

- $R=0 \rightarrow$ no voltage difference exists
(all points on the wire are at the same potential)
- Current can flow, as determined by the circuit

Air ("open circuit"):

- $R=\infty \rightarrow$ no current flows
- Voltage difference can exist, as determined by the circuit

Ideal Voltage Source

- Circuit element that maintains a prescribed voltage across its terminals, regardless of the current flowing in those terminals.
- Voltage is known, but current is determined by the circuit to which the source is connected.
- The voltage can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying. Circuit symbols:

voltage-controlled

current-controlled

Ideal Current Source

- Circuit element that maintains a prescribed current through its terminals, regardless of the voltage across those terminals.
- Current is known, but voltage is determined by the circuit to which the source is connected.
- The current can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying. Circuit symbols:

voltage-controlled

current-controlled

