EE40 Lecture 3 Josh Hug

The iPhone 4 integrates the antenna into the case

6/25/2010

"Users [are] reporting a drop in signal strength when the phone is held." -BBC
"If you ever experience this on your iPhone 4, avoid gripping it in the lower left corner in a way that covers both sides of the black strip in the metal band, or simply use one of many available cases."-Apple

Logistical Notes

- Office Hours - Room reservation has been put in, but no word from the people yet. I've got someone looking into it
- HW1 due today at 5 PM in the box in 240 Cory
- No i>Clicker today [couldn't get hardware today]

Nodal Analysis: Example

Using the basic method

- 5 unknowns
- 2 KCL equations
- 3 KVL equations

Nodal Analysis: Example

One equation, one unknown
With Node Voltage:

$$
\begin{aligned}
& \frac{V_{a}-V_{2}}{R_{5}}+\frac{V_{a}}{R_{4}}-I_{1}+\frac{V_{a}+V_{1}}{R_{1}}=0 \\
& G_{5}\left(V_{a}-V_{2}\right)+G_{4} V_{a}-I_{1}+G_{1}\left(V_{a}+V_{1}\right)=0 \\
& V_{a}\left(G_{5}+G_{4}+G_{1}\right)=G_{5} V_{2}+I_{1}-G_{1} V_{1}
\end{aligned}
$$

Nodal Analysis: Example

$$
V_{a}\left(G_{5}+G_{4}+G_{1}\right)=G_{5} V_{2}+I_{1}-G_{1} V_{1}
$$

$$
V_{a}=\frac{G_{5} V_{2}+I_{1}-G_{1} V_{1}}{G_{5}+G_{4}+G_{1}}
$$

$$
V_{a}=\frac{R_{4}\left(I_{1} R_{1} R_{5}-R_{5} V_{1}+R_{1} V_{2}\right)}{R_{4} R_{5}+R_{1}\left(R_{4}+R_{5}\right)}
$$

It's fine to leave your answer in terms of conductances on HW and exams

Dependent Sources

- In practice, we'll want to use controllable sources
- Called "dependent sources" since their output is dependent on something external to the source itself

independent

dependent
- In theory, a dependent source could be a function of anything in the universe
- Intensity of light incident on the source
- Number of fish within 3 miles

Dependent Sources

- Since we're building electrical circuits, dependent sources have been developed which are functions of other electrical quantities

$$
I_{100}=\frac{3 V_{40}}{100 \Omega}=\frac{3 \times 4 \mathrm{~V}}{100 \Omega}=0.12 \mathrm{~A}
$$

Dependent Sources

- Dependent sources allow us to decouple the controller from the controlled
- Acceleration of the engine affect by gas pedal
- Gas pedal not affected by engine acceleration
- This is in contrast to our circuits so far where everything is connected

Dependent Sources With Feedback

- Dependent sources can be coupled to their controller
- This is useful for when the controller needs feedback from the thing being controlled
- Can be a little tricky to analyze

Node Voltage With Dependent Source

$$
\frac{V_{a}-100}{100}+\frac{V_{a}}{20}-4 i_{1}=0
$$

- There are two ways to proceed:

$$
i_{1}=-\frac{V_{a}-100}{100}
$$

- Direct substitution (almost always better)
- Indirect substitution (tough part of the reading)

Direct Substitution Method for Dependent Sources

$$
\begin{aligned}
& \frac{V_{a}-100}{100}+\frac{V_{a}}{20}-4 i_{1}=0 \quad i_{1}=-\frac{V_{a}-100}{100} \\
& \frac{V_{a}-100}{100}+\frac{V_{a}}{20}+4 \frac{V_{a}-100}{100}=0 \\
& V_{a}-100+5 V_{a}+4 V_{a}-400=0 \\
& 10 V_{a}=500 \\
& V_{a}=50
\end{aligned}
$$

Node Voltage With Dependent Source

$$
\frac{V_{a}-100}{100}+\frac{V_{a}}{20}-4 i_{1}=0
$$

- There are two ways to proceed:

$$
i_{1}=-\frac{V_{a}-100}{100}
$$

- Direct substitution (almost always better)
- Indirect substitution (tough part of the reading)

$$
\begin{gathered}
\downarrow \\
? \quad i=g(i) \quad ? \\
I=f(i)=f(g(i)) \\
?
\end{gathered}
$$

Indirect Substitution Method for Dependent Sources

Node voltage vs. dummy source

$$
V_{a}=\frac{100+100 I}{6}
$$

Node voltage vs. controlling current

$$
i_{1}=\frac{100-V_{a}}{100}
$$

$$
\begin{gathered}
\frac{I}{4}=\frac{100-\frac{100+100 I}{6}}{100} \\
I=2 \mathrm{~A}
\end{gathered}
$$

Summary So Far

- Dependent sources model controllable electrical sources
- Node voltage can be used with dependent sources
- Controlling input can be seemingly difficult to deal with, e.g. $\frac{V_{a}-100}{100}+\frac{V_{a}}{20}-4 i_{1}=0$
- Direct Substitution: Replace controlling input with expression in terms of
- The node voltages you're trying to solve for
- Known currents if controlling input driven by current source
- Indirect Substitution: Treat dependent source as a new variable and solve (better in rare cases)

Useful Resistive Circuits

- Wheatstone Bridge
- Used for measuring unknown resistances
- Strain Gauge
- Used for measuring weight

Wheatstone Bridge

- Named for Charles Wheatstone
- Used for measuring resistance of an unknown resistor
- Parts:
- Known resistors R_{1} and R_{2}
- Adjustable resistor R_{3}
- Unknown resistance R_{x}

- Basic concept:
- If $\frac{R_{1}}{R_{3}}=\frac{R_{2}}{R_{x}}$, then no current will flow in the middle branch

Finding the value of $\boldsymbol{R}_{\mathrm{x}}$

- Adjust $\boldsymbol{R}_{\mathbf{3}}$ until there is no current in the detector

Strain Gauge Intuition

- Resistance is a function of wire length and area
- Weight stretches a wire, changing its shape
- Can theoretically get weight of a load by seeing how resistance varies when a load is added

Resistivity

- Wire resistance: $R=\rho \frac{l}{A}$
- ρ is resistivity, measured in $\Omega \cdot \mathrm{m}$
- Can think of as how tightly molecular lattice holds on to electrons

Material	ρ
Copper	1.68×10^{-8}
Aluminum	2.82×10^{-8}
Nichrome	1.1×10^{-6}
Glass	10^{10}

Wire Gauge

Gauge	Diameter $[\mathrm{mm}]$	Area [mm²]
10	2.58	5.26
14	1.62	2.08
16	1.29	1.31

Resistance of $30 \mathrm{~m}, 16$ gauge extension cord?

$$
\begin{aligned}
& 1.68 \times 10^{-8} \Omega m \frac{30 \mathrm{~m}}{1.31 \times 10^{-6} m^{2}} \\
& 0.384 \Omega
\end{aligned}
$$

If carrying 10 amps , how much power dissipated?

$$
P=V I=I^{2} R=38.4 W
$$

Basic Principle

- Pull on resistor:
- $L=L_{0}+\Delta \mathrm{L}$
- $\mathrm{A}=\mathrm{A}_{0}-\Delta \mathrm{A}$
- V=LA [constant]
- Length wins the battle to control resistance
- $\mathrm{R}=\mathrm{R}_{0}+\Delta \mathrm{R}$

$$
\begin{aligned}
& \text { Define strain } \varepsilon=\frac{\Delta L}{L_{0}} \\
& \frac{\Delta R}{R_{0}}=G F \times \varepsilon \quad \text { Whe }
\end{aligned}
$$

$$
R=\rho \frac{l}{A}
$$

$$
R=\stackrel{\mathrm{A}}{R_{0}}+\Delta R=\rho \frac{L_{0}+\Delta L}{A_{0}-\Delta A}
$$

Where the Gauge Factor relates to how length/area change. GF~2

Using Strain to Measure Weight

- We'll attempt to

$$
\frac{\Delta R}{R_{0}}=G F \times \varepsilon
$$

$$
\varepsilon
$$

design a circuit which can measure ε

- Convert $\frac{\Delta R}{R_{0}}$ into a voltage
- We'll leave it to the mechanical engineers to map ε back to load

Microcontroller

Using Strain to Measure Weight

ε

Microcontroller vx_to_delRr0(vx)

One Possible Design

- Here, R_{x} is a

variable resistor, where R_{x} is dependent on strain
- As strain varies, so will v_{x}

One Possible Design

$$
\begin{aligned}
& \underbrace{R_{\text {ref }}^{R_{x}}+}_{\varepsilon=\frac{\Delta R}{R_{0}} \times \frac{1}{G F}} \\
& v_{x}=V_{s} \frac{R_{o}+\Delta R}{R_{o}+\Delta R+R_{\text {ref }}} \\
& \cong V_{s} \frac{R_{o}+\Delta R}{R_{o}+R_{\text {ref }}} \\
& \mathrm{v}_{\mathrm{x}} \text { is what } \mu \text { Controller sees }
\end{aligned}
$$

μ Controller calculates ε from known quantities $\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{s}}$,
$\mathrm{R}_{0}, \mathrm{R}_{\mathrm{ref}}$, GF , and then weight from ε

Better Circuits

- This will work, but:
- $V_{x} \neq 0$ for $\varepsilon=0$
- As source voltage varies (e.g. battery gets old), calibration changes - "zero drift"

Improvement \#1: Half Bridge

Works, but requires balanced sources

Improvement \#2: Full Bridge

Works, but requires resistors with value equal to R_{0}

Strain Gauge Summary

- We can map strain (weight) to resistance
- Simplest design (voltage divider) works, but is subject to zero-drift
- More complex circuits give different design tradeoffs
- Wheatstone-bridge provides arguably the best design
- We will explore these tradeoffs in lab on Wednesday

Useful Resistive Circuit Summary

- The Wheatstone bridge (and other designs) provide us with a way to measure an unknown resistance
- There are resistors which vary with many useful parameters, e.g.
- Incident light
- Temperature
- Strain
- And then... there are always toasters

Back to Circuit Analysis

- Next we'll discuss a few more circuit analysis concepts
- Superposition
- Equivalent Resistance
- Deeper explanation of equivalent resistance
- For circuits with dependent sources
- Thevenin/Norton Equivalent Circuits
- Simulation

Superposition

- Principle of Superposition:
- In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone.
- A linear circuit is one constructed only of linear elements (linear resistors, and linear capacitors and inductors, linear dependent sources) and independent sources.
- Linear means I-V characteristic of all parts are straight when plotted

Superposition

Procedure:

1. Determine contribution due to one independent source

- Set all other sources to 0:
- Replace independent voltage source by short circuit
- independent current source by open circuit

2. Repeat for each independent source
3. Sum individual contributions to obtain desired voltage or current

Easy Example

- Find V_{0}

Voltage Divider: -1V

Easy Example

- Find V_{0}

Current Divider: $-(3 \mathrm{~A} * 4 \Omega)=-12 \mathrm{~V}$

Easy Example

- Find V_{0}

Due to voltage source
Due to current source

Hard Example

Example

Equivalent resistance:

$$
3+2+(3 \| 2)=5+(3 * 2) /(3+2)=6.2 \mathrm{~V}
$$

Current is 10 A

50 V loss through top 5Ω, leaving 12 V across v_{0}

Example

$\frac{V_{o}}{3}+\frac{V_{o}}{2}+31+\frac{V_{o}-V_{T}}{2}=0$
$-31+\frac{V_{T}-V_{o}}{2}+\frac{V_{T}}{3}=0$

This will work...

But algebra is easier if we pick a better ground

Example

$$
\frac{V_{B}}{2}+\frac{V_{B}}{3}+\frac{V_{B}-V_{T}}{3}=0 \quad \longrightarrow \quad V_{B}=\frac{2}{7} V_{T}
$$

Example

$\mathrm{V}_{\mathrm{o}}=-12 \mathrm{~V}$

$\mathrm{V}_{\mathrm{o}}=12 \mathrm{~V}$

$$
V_{o}=-12 V+12 V=0 V
$$

Note on Dependent Sources

- You can use superposition in circuits with dependent sources
- However, DON'T remove the dependent sources! Just leave them there.

Equivalent Resistance Review

- If you add a source to any two terminals in a purely resistive circuit
- The added source will "see" the resistive circuit as a single resistor

Alternate Viewpoint

We can think of the circuit above as a two terminal circuit element with an I-V characteristic

Equivalent Resistance

- Let's consider the IV characteristic of the following circuit:

Equivalent Resistance

$$
\begin{array}{cr}
\frac{V_{2}-V}{R_{1}}+\frac{V_{2}}{R_{2}}+\alpha V_{2}=0 & V_{2}=\frac{R_{2} V}{R_{1}+R_{2}+\alpha R_{1} R_{2}} \\
I=\frac{V-\frac{R_{2} V}{R_{1}+R_{2}+\alpha R_{1} R_{2}}}{R_{1}} & \frac{I}{V}=\frac{1+\alpha R_{2}}{R_{1}+R_{2}+\alpha R_{1} R_{2}}
\end{array}
$$

Equivalent Resistance

This circuit just acts like a resistor!

Equivalent Resistance Summary So Far

- Purely resistive networks have an I-V characteristic that looks just like their equivalent resistance
- Purely resistive networks which also include dependent sources also act like resistors
- Let's see what happens with a circuit with an independent source

Equivalent Resistance Summary So Far

$$
I=\frac{V-10}{5}=\frac{V}{5}-2
$$

Doesn't match our basic I-V characteristics... good!

Interestingly...

$$
\begin{aligned}
I & =\frac{V-20}{10}+\frac{V}{10} \\
& =\frac{V}{5}-2
\end{aligned}
$$

Equivalent Circuits

10Ω

Has the exact same I-V characteristic as:

Thevenin Equivalents

- We saw before that we can replace a network of resistors (and dependent sources) with a single equivalent resistance
- Now, we have that we can replace any circuit we can build so far with a single voltage source and resistor
- Not proven, but it's true, trust me
- This two element network is known as a Thevenin equivalent
- Generalization of the idea of equivalent resistance

Again: Discovered twice, named after the second guy!

Why is this useful?

- Can swap out elements and not have to resolve a big circuit again
- Captures the fundamental operation of the circuit as a whole (at chosen two terminals only!)

Thevenin Algorithm for Independently Sourced Circuits

- What you're ultimately doing is finding the I-V characteristic of the circuit
- You can do this by attaching a made up V, and calculating I as on slides 49 and 50 - Often called a "Test Voltage"
- This is equivalent to:
- Finding the "open circuit" voltage
- Finding the "short circuit" current

Calculating a Thévenin Equivalent

1. Calculate the open-circuit voltage, $v_{o c}$

2. Calculate the short-circuit current, $i_{\text {sc }}$

- Note that $i_{\text {sc }}$ is in the direction of the open-circuit voltage drop across the terminals a,b!

$$
\begin{aligned}
& V_{\mathrm{Th}}=v_{\mathrm{oc}} \\
& R_{\mathrm{Th}}=\frac{v_{\mathrm{oc}}}{i_{\mathrm{sc}}}
\end{aligned}
$$

Example - On the Board

Find the Thevenin Equivalent circuit, by finding

1. V_{OC}
2. I_{SC}

Finding Thevenin Resistance Directly

- If there are no dependent sources in the circuit, we can find the Thevenin
Resistance directly
- Algorithm is easy:
- Set all independent sources to zero
- Voltage source becomes short circuit
- Current source becomes open circuit
- Leave dependent sources intact
- Find equivalent resistance between terminals of interest

Norton Equivalent Circuit

- Any network of voltage sources, current sources, and resistors can also be replaced by an equivalent circuit consisting of an independent current source in parallel with a resistor without affecting the operation of the rest of the circuit.

Example - On the Board

Find the Thevenin Equivalent resistance directly

Finding I_{N} and R_{N}

- We can derive the Norton equivalent circuit from a Thévenin equivalent circuit simply by making a source transformation:

$$
i_{\mathrm{L}}=\frac{v_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{\mathrm{L}}}
$$

$$
R_{\mathrm{N}}=R_{\mathrm{Th}}=\frac{v_{\mathrm{oc}}}{i_{\mathrm{sc}}} ; \quad i_{\mathrm{N}}=\frac{v_{\mathrm{Th}}}{R_{\mathrm{Th}}}=i_{\mathrm{sc}}
$$

Circuit Simulation

- Automated equation solvers use our algorithm:
- Choose a ground node
- Assign node voltage labels to all nodes
- Write out a system of N - 1 linear equations
- Solve (using standard linear algebra techniques)
- One pretty handy tool is falstad.com's circuit simulator
- Let's try a live demo

Extra Slides

Delta-Wye Conversion

Equivalent Resistances

Are there any circuit elements in paniaHRl?

No

Are there any circuit elements in parallel?

No

What do we do?

1. Be clever and find I-V characteristic directly
2. Apply weirder transformation rules than series or parallel

Y-Delta Conversion

- These two resistive circuits are equivalent for voltages and currents external to the Y and Δ circuits. Internally, the voltages and currents are different.

$$
R_{1}=\frac{R_{\mathrm{b}} R_{\mathrm{c}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}} \quad R_{2}=\frac{R_{\mathrm{a}} R_{\mathrm{c}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}} \quad R_{3}=\frac{R_{\mathrm{a}} R_{\mathrm{b}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}}
$$

$\Delta-\mathrm{Y}$ and $\mathrm{Y}-\Delta$ Conversion Formulas

Delta-to-Wye conversion

$$
\begin{aligned}
& R_{1}=\frac{R_{\mathrm{b}} R_{\mathrm{c}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}} \\
& R_{2}=\frac{R_{\mathrm{a}} R_{\mathrm{c}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}} \\
& R_{3}=\frac{R_{\mathrm{a}} R_{\mathrm{b}}}{R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}}
\end{aligned}
$$

Wye-to-Delta conversion

$$
\begin{aligned}
& R_{\mathrm{a}}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \\
& R_{\mathrm{b}}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
& R_{\mathrm{c}}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

Circuit Simplification Example

Find the equivalent resistance $\boldsymbol{R}_{\mathrm{ab}}$:

General Versions of Thevenin Slides

Equivalent Resistance Summary So Far

- Purely resistive networks have an I-V characteristic that look just like their equivalent resistance
- Networks which include dependent sources also act like resistors
- Let's see what happens with a circuit with a source

Equivalent Resistance Summary So Far

$$
I=\frac{V-V_{s}}{R_{1}}
$$

Doesn't match our basic I-V characteristics... good!

Interestingly...

$$
I=\frac{V-V_{s}}{R_{1}}+\frac{V}{R_{2}}
$$

Has the exact same I-V characteristic as:

