EE40 Lecture 6 Josh Hug

7/2/2010

General Info

- HW2 due today at 5PM
- HW3 out, due TUESDAY at 2PM
- There will be an optional pre-midterm HW available Tuesday
- No lecture Monday
- Labs as usual on Tuesday
- No lab Wednesday
- Midterm next Friday in class
 - 12:10-1:30 [be on time!]
 - No electronic devices
 - One 8.5"x11" (or A4) sheet of paper
 - Handwritten anything you want, both sides

Op-Amps – How Good Are They Exactly?

- We've been studying ideal op-amps
- Of course, real Op-Amps aren't perfect
 - For example, you can't drive every device in the universe from a real op-amp
- How do we precisely state the quality of a voltage source?
 - Look at its Thevenin equivalent
 - Lower Thevenin resistance is better

Example: Batteries

- Real voltage sources, like batteries, have a limit to how much current they can draw
 - Called "internal resistance"
 - This internal resistance often varies with charge status, load attached, temperature, and more
 - Just like Thevenin resistance

e.g., a car battery supplies 12 Volts, and can supply at most 200 amps, what is its internal resistance?

Measuring the Quality of a Source

• If you attach a resistive load, then the output voltage is:

$$-V_{out} = \frac{R_L}{R_L + R_{TH}} V_{TH}$$

- If you want V_{out} to be 99% of $V_{\text{TH}},$ then:

$$- \frac{99}{100} V_{TH} = \frac{R_L}{R_L + R_{TH}} V_{TH}$$

$$- R_L = 99R_{TH}$$

So basically, for loads which are more than 99 times the Thevenin resistance, you get >99% of the Thevenin voltage

Lower R_{TH} is better, can handle smaller loads

Source Quality Example

• Everyone's favorite resistive power supply again, $v_o = v_i/1000$

Thevenin Equivalents of Op-Amp circuits

 Can find Thevenin equivalent of an op-amp circuit at its output terminals:

• Just like finding Thevenin equivalent of a simple resistor based voltage attenuator at its output terminals:

Thevenin of Inverting Amplifier

- Assuming that the op-amp here is IDEAL, what's the best way to find the Thevenin equivalent circuit?
 - We've already derived that it's a perfect voltage source!

But if you really want to...

Technically you should take limits here but we are lazy...

EE40 Summer 2010

9

What's wrong?

- Our op-amp model is missing something
 - That's why it's the "ideal" op-amp model
 - We'll now introduce the "resistive" op-amp model

10

Resistive Op-Amp model

- Takes in to account the fact that
 - Some current flows into the input terminals
 - The op-amp cannot source all device in the universe (output resistance is non-zero)

Output Resistance of Inverting Op-Amp

 On board (using resistive model of opamp)

- Output Resistance
 - Tells us how small our load can be before we start losing signal fidelity

Input Resistance

- Resistance at the input terminals of a device
- Tells us how much current will be generated for a fixed input voltage
 - Useful, for example, to find power needed to power a device (at that input)

ug

Input Resistance of Inverting Amplifier

 What is the input resistance of an inverting amplifier using ideal op-amp model?

• What is the input resistance of an inverting amplifier using resistive op-amp model?

$$R_{i} = r_{i} \parallel (R_{f} + r_{t}) \parallel \left(\frac{R_{f} + r_{t}}{A}\right) \quad \text{(See sec 15.42 in book)}$$

$$R_{in} \cong R_{s}$$

Why are these quantities useful?

 Input resistance tells us how much current (power) our input signal needs to provide

 Output resistance says how small of a load we can drive

Why are these quantities useful?

- An iPod provides roughly 1V signal output with 20Ω internal resistance
- Speakers might be 4Ω resistance
- Connect iPod directly to such speakers
 - Internal resistance dominates

$$V_{speaker} = \frac{4}{20+4} \times 1V = 0.17V$$

 $P_{speaker} = 0.17^2/4\Omega = 0.0072 Watts$

Why are these quantities useful?

$$R_{in} \cong R_s$$

17

Bad Amplifier (Small R_s)

- Very small R_s
 - iPod must supply 50mW
 - Output resistance is large (can't drive speakers)

Good Amplifier

Must provide 1 mW

• R_s=1000, R_f=3000, A=10⁶, R_t=1000

Op-Amp Saturation

 Remember those power ports we've been ignoring?

They specify the maximum and minimum voltage that our op-amp can deliver

$$- \text{ If } v_{\min} < A(v^+ - v^-) < v_{max}$$

• Op-Amp output is $A(v^+ - v^-)$

- $\text{ If } A > v_{max},$
 - Op-Amp output is v_{max}

 $- \text{ If } A < v_{min},$

Op-Amp Saturation Example

•
$$v_{max} = 12V$$
, $v_{min} = -12V$

• If A=3: V_{in} V_{o} -5 V -12V -1V -3V 2V 6V 1,512,312V 12V

Positive Feedback

On the board

That's all forOp-Ampsks

- No class Monday
- Enjoy weekend (doing op-amp problems)