7/12/2010 Lecture 8

Capacitors and Inductors

Congratulations to Paul the Octopus on getting 8/8 world cup predictions correct

So far...

- All circuits we've dealt with have reacted instantaneously
 - Change a resistance, voltage, or current, and everything else reacts instantly
- Obviously this isn't a complete model for electronic device. Why?

For the next 2 weeks

- We'll be talking about elements with memory
 - Capacitors
 - Inductors
- Our first 6 lectures taught us how we can take a circuit schematic containing memoryless elements and convert them into algebraic equations
- In the next 2 lectures we'll talk about how to convert circuits with memory into differential equations
- The next 3 after that will be about how we can use algebraic equations for circuits with memory if we have AC sources

Announcements

- Midterm #2 will be on the 28th
 Elements with memory
- Make sure you do pre-lab before lab tomorrow
 - Who has finished it?

The Capacitor

- The basic idea is pretty simple
 - Imagine you have two parallel metal plates, both of which have equal and opposite excess charges
 - Plates are separated by an insulating layer (air, glass, wood, etc)

- The charges would love to balance out
- Insulator blocks them (just as the ground blocks you from falling into the center of the earth)

The Capacitor

- If you were to connect a resistive wire to the plates
 - Charges would flow through the wire
 - Charge flow is current
 - $P = I^2 R$
 - Energy is released as heat

 Remember that a voltage is the electrical potential between two points in space

- Here, we have an imbalance of charge, and thus an electric field, and thus a voltage V = EL
 - Field strength is dependent on number and distribution of charges as well as material properties
 - Field length is dependent on size of capacitor
 - Capacitor size and material properties lumped into single "capacitance" C

•
$$V = Q/C$$

The Capacitor

- Thus, if you connect a voltage source to the plates
 - Like charges will move to get away from the source
 - Charge flow is current
 - Current will stop once charges reach equilibrium with voltage source, i.e. $V_c = V_s$
 - Energy has been stored

The Capacitor

iClicker

Extreme Corner Case

What happens if we short a charged capacitor?

- Think of it is as the limit as resistance goes to zero:
 - Infinite current
 - Lasts only a very short time (P = V(t)I(t)) until energy is released
- Mathematically poorly behaved – Don't do this

How much energy is stored?

•
$$P(t) = V(t)I(t)$$

• $P(t) = V_C(t)C\frac{dV_C(t)}{dt}$
• $E = \int_0^t P(t)dt$
 $= \frac{1}{2}CV_C(t)^2$

Strictly speaking we shouldn't use t as our integration variable and also the limit that we're integrating to, but you know what I mean...

Practical Capacitors

 A capacitor can be constructed by interleaving the plates with two dielectric layers and rolling them up, to achieve a compact size.

- To achieve a small volume, a very thin dielectric with a high dielectric constant is desirable. However, dielectric materials break down and become conductors when the electric field (units: V/cm) is too high.
 - Real capacitors have maximum voltage ratings
 - An engineering trade-off exists between compact size and high voltage rating

Capacitors

- Useful for
 - Storing Energy
 - Filtering
 - Modeling unwanted capacitive effects, particularly delay

Capacitor

<u>Note</u>: v_c must be a continuous function of time since the charge stored on each plate cannot change suddenly

Node Voltage with Capacitors

- At the top right node, we write KCL
 - Current to the left through resistor:

$$V_{C}(t) - V_{I}(t)$$

Current down through the capacitor

$$C\frac{dV_C(t)}{dt}$$

Node Voltage with Capacitors

- Or in other words $\frac{V_{C}(t) - V_{I}(t)}{R} + C \frac{dV_{C}(t)}{dt} = 0$
- Or more compactly: $\frac{V_{C} - V_{I}}{R} + CV_{C}' = 0$

ODEs

$$\frac{V_C - V_I}{R} + CV_C' = 0$$

- Later today, we'll talk about how to solve ODEs...
- For now, let's talk about inductors

 Capacitors are a piece of cake to understand, just rely on Coulomb's Law

$$F = k_e \frac{q_1 q_2}{d^2}$$

 Inductors, by contrast, involve magnetic fields, and rely instead on Faraday's Law

- Comprehension comes with greater difficulty

 Thus, we'll treat inductors as mathematical objects and leave the derivation to Physics 7B (or page 467 of the book)

Two Fundamental Principles

- The flow of current induces a magnetic field (Ampere's Law)
- A change in magnetic field through a loop of wire induces a voltage (Faraday's Law)

Inductor Basics (1)

- When we connect a voltage source to a wire, current clearly takes a little time to get moving
- Thus, the magnetic field builds to some maximum strength over time

Hua

Inductor Basics (2)

Current in a wire causes induces a voltage in any nearby circuit

Inductors Basics (3)

 If we make a loop, the entire loop of wire will all contribute to the magnetic field through the loop

- What's more, this field will go through the loop producing the current!
 - Self induced voltage
 - Self inductance

From: Dr. Richard F.W. Bader Professor of Chemistry / McMaster University

Inductors Basics (4)

- More loops
 - More magnetic field generated
 - More circuit to receive magnetic field

- Inductors are literally just loops of wire
- Just like capacitors are just two conductors separated by an insulator (or a gap)
- Just like resistors are just stuff with wires stuck to the ends

University of Surrey

EE40 Summer 2010 http://personal.ee.surrey.ac.uk/Personal/H.M/UGLabs/components/inductors.htm

Hua

Inductors

- Capacitors hold a voltage in the form of stored charge
- Inductors hold a current in the form of stored magnetic field [dude...]

 For webcast viewers, see drawings on board/notes for more comparison to capacitor

<u>Units</u>: Henrys (Volts • second / Ampere)

(typical range of values: µH to 10 H)

Current in terms of voltage:

$$di_{L} = \frac{1}{L} v_{L}(t) dt$$
$$i_{L}(t) = \frac{1}{L} \int_{t_{0}}^{t} v_{L}(\tau) d\tau + i(t_{0})$$

<u>Note</u>: i_L must be a continuous function of time

Summary

Capacitor

$$i = C\frac{dv}{dt}; w = \frac{1}{2}Cv^2$$

$$v = L\frac{di}{dt}; w = \frac{1}{2}Li^2$$

Inductor

v cannot change instantaneouslyi cani can change instantaneouslyv canDo not short-circuit a chargedDocapacitor (-> infinite current!)cur

In steady state (not timevarying), a capacitor behaves like an open circuit. *i* cannot change instantaneously
 v can change instantaneously
 Do not open-circuit an inductor with current (-> infinite voltage!)

In steady state, an inductor behaves like a short circuit.

Ordinary Differential Equations

- Inductors, too, give us a simple 1st order relationship between voltage and current
- Node Voltage with memoryless circuits gave us algebraic equations
- Node voltage with elements with memory will give us Ordinary Differential Equations (ODEs)
- Next week will be a bunch of setting up and solving 1st and 2nd order linear ODEs
- Higher order and especially nonlinear ODEs are tough to solve. For example...

Chua's Circuit

EE40 Summer 2010

Hug 29

Chua's Circuit

• Despite simplicity of ODEs

$$\frac{dx}{dt} = \alpha(y - x - f(x))$$
$$\frac{dy}{dt} = x - y + z$$
$$\frac{dz}{dt} = -\beta y$$

• Exhibits chaos!

Invented by current UC Berkeley EECS professor Leon Chua in 1983

