

EE 42 - Introduction to Electronics for Computer Science

Fall 2003,
Prof. A. R. Neureuther Dept. EECS, 510 Cory neureuth@eecs.berkeley.edu 642-4590 UC Berkeley Office Hours M1, Tu, Tu 10:30-11:30, F 1
Course Web Site

Problem Set \# 8
 Due:1 PM Oct 29th, 2003 in box in 240 Cory

8.1 Three Terminal Devices

Assume the device model to the right. Given that the three-terminal device has the given IV characteristic graph for varying input voltage, and assuming that the pull up resistance in the circuit is $60 \mathrm{k} \Omega$:
a) Plot the $\mathrm{I}_{\text {Out }}$ vs. V Vut graph for the resistor given its voltage on its high side is $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

b) Mark operating $\mathrm{I}_{\text {out }} \mathrm{Vs} \mathrm{V}_{\text {out }}$ values for $\mathrm{VIN}=0,1,2,3,4$, and 5 V .
c) Make a rough sketch of the Voltage Transfer Characteristic ($V_{\text {Out }}$ vs. $\mathrm{V}_{\text {IN }}$) from your data.

8.2 General Load

Repeat Problem 8.1 with a load resistor of $100 \mathrm{k} \Omega$ attached from $\mathrm{V}_{\text {Out }}$ to a 2.5 V supply. (Hint: First find a Thevenin Equivalent circuit looking out from the device into the rest of the circuit.)

8.3 CMOS

Use the device models at the bottom of the page and assume $\mathrm{W} / \mathrm{L}=2$ and output is open circuit.
a) Draw the $\mathrm{I}_{\text {Out }}$ vs. $\mathrm{V}_{\text {Out }}$ for the NMOS device assuming a supply voltage V_{DD} of 5 V and
 $\mathrm{V}_{\text {IN }}$ of $0,1,2,3,4$, and 5 V . (Hint: For the NMOS first plot the point at which the device changes from a resistor to a constant current at the saturated level. Then draw the linear and constant lines.)
b) Repeat on the same graph for the PMOS device). (Hint: For the PMOS, switch your thinking to $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OUT}}$ as the positive voltages and $\mathrm{I}_{\mathrm{OUT}}$ as the positive
$\mathrm{v}_{\text {out }}$ downward current. Then repeat the process and label the curves with their values of $\mathrm{V}_{\text {IN }}$.)
c) Mark the locations where for each of the six given $\mathrm{V}_{\text {IN }}$ values the two devices have the same $\mathrm{I}_{\text {Out }}$ and $\mathrm{V}_{\text {out }}$.
d) Sketch the Voltage Transfer Characteristic ($\mathrm{V}_{\text {OUt }}$ vs. $\mathrm{V}_{\text {IN }}$) from your data.

8.4 Sized CMOS Circuits and V_{M}

a) Use the V_{M} method to find the voltage of the vertical portion of $\mathrm{V}_{\text {OUT }}$ vs. $\mathrm{V}_{\text {IN }}$ curve.
b) Sketch $\mathrm{I}_{\text {Out }}$ vs $\mathrm{V}_{\text {OUt }}$ for NMOS and PMOS device when $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{M}}$.
c) Determine the factor by which W / L of the PMOS device must be increased to make $\mathrm{V}_{\mathrm{M}}=$ 2.5 V .
V_{M} comes from setting the two currents equal and constraining $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{M}}$.

$$
\begin{aligned}
& I_{\text {OUT-SAT-n }}=k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{I N}-V_{T n}\right) V_{O U T-S A T-n} \\
& I_{\text {OUT-SAT-p }}=k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{D D}-V_{I N}-\left|V_{T_{p}}\right|\right) V_{\text {OUT-SAT-p }}
\end{aligned}
$$

	$\mathrm{V}_{\mathrm{T}}(\mathrm{V})$	$\mathrm{V}_{\text {OUT-SAT }}(\mathrm{V})$	$\mathrm{k}^{\prime}\left(\mu \mathrm{A} / \mathrm{V}^{2}\right)$
NMOS	0.43	0.63	100
PMOS	0.4	1	25

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{U}}=\mathrm{k}^{\prime}{ }_{\mathrm{P}}(\mathrm{~W} / \mathrm{L})_{\mathrm{P}} \\
& \mathrm{k}_{\mathrm{D}}=\mathrm{k}_{\mathrm{n}}^{\prime}(\mathrm{W} / \mathrm{L})_{\mathrm{n}}
\end{aligned}
$$

