

EE 42 Introduction to Electronics for **Computer Science**

Fall 2003. UC Berkeley **Course Web Site**

Prof. A. R. Neureuther Dept. EECS, 510 Cory neureuth@eecs.berkelev.edu 642-4590 Office Hours M1, Tu, Tu 10:30-11:30, F 1 http://www-inst.eecs.berkeley.edu/~ee42/

Problem Set # 8 Due:1 PM Oct 29th, 2003 in box in 240 Cory

8.1 Three Terminal Devices

Assume the device model to the right. Given that the three-terminal device has the given IV characteristic graph for varying input voltage, and assuming that the pull up resistance in the circuit is $60k\Omega$:

a) Plot the I_{OUT} vs. V_{OUT} graph for the resistor given its voltage on its high side is $V_{DD} = 5V$.

- b) Mark operating I_{OUT} vs V_{OUT} values for VIN = 0, 1, 2, 3, 4, and 5V.
- c) Make a rough sketch of the Voltage Transfer Characteristic (V_{OUT} vs. V_{IN}) from your data.

8.2 General Load

V_{DD}

Output

V_{IN-U}

p-type MOS

Transistor (PMOS)

n-type MOS Transistor

(NMOS) -≗

Repeat Problem 8.1 with a load resistor of $100k\Omega$ attached from V_{OUT} to a 2.5 V supply. (Hint: First find a Thevenin Equivalent circuit looking out from the device into the rest of the circuit.) **8.3 CMOS**

Use the device models at the bottom of the page and assume W/L = 2 and output is open circuit.

a) Draw the I_{OUT} vs. V_{OUT} for the NMOS device assuming a supply voltage V_{DD} of 5V and V_{IN} of 0, 1, 2, 3, 4, and 5V. (Hint: For the NMOS first plot the point at which the device changes from a resistor to a constant current at the saturated level. Then draw the linear and constant lines.)

Repeat on the same graph for the PMOS device). (Hint: For the PMOS, switch your b) thinking to $V_{DD} - V_{IN}$ and $V_{DD} - V_{OUT}$ as the positive voltages and I_{OUT} as the positive v_{our} downward current. Then repeat the process and label the curves with their values of V_{IN}.)

- c) Mark the locations where for each of the six given V_{IN} values the two devices have the same I_{OUT} and V_{OUT}.
- d) Sketch the Voltage Transfer Characteristic (V_{OUT} vs. V_{IN}) from your data.

8.4 Sized CMOS Circuits and V_M

- a) Use the V_M method to find the voltage of the vertical portion of V_{OUT} vs. V_{IN} curve.
- b) Sketch I_{OUT} vs V_{OUT} for NMOS and PMOS device when $V_{IN} = V_M$.
- c) Determine the factor by which W/L of the PMOS device must be increased to make $V_M =$ 2.5 V.

 V_M comes from setting the two currents equal and constraining $V_{OUT} = V_{IN} = V_M$.

$$I_{OUT-SAT-n} = k'_n \left(\frac{W}{L}\right)_n (V_{IN} - V_{Tn}) V_{OUT-SAT-n}$$
$$I_{OUT-SAT-p} = k'_p \left(\frac{W}{L}\right)_p (V_{DD} - V_{IN} - |V_{Tp}|) V_{OUT-SAT-p}$$

	V _T (V)	V _{OUT-SAT} (V)	k' (μA/V ²)
NMOS	0.43	0.63	100
PMOS	0.4	1	25

$$k_{\rm U} = k'_{\rm P} (W/L)_{\rm P}$$
$$k_{\rm D} = k'_{\rm n} (W/L)_{\rm n}$$