UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering
Department of Electrical Engineering and Computer Sciences
Last modified on November 26, 2003 by Eric Chung (e_chung@uclink.berkeley.edu)

Prof. Neureuther

Homework 11 Solutions

Problem 11.1. S-R Flip-Flop

Problem 11.2. Circuit extraction and delay

(a)

$$
F 1=\overline{(A 1+B 1) \bullet C 1 \bullet D 1}
$$

$$
F 2=\overline{A 2 \bullet B 2+C 2}
$$

(b)

Gate 1

Maximum high-to-low delay: $\tau_{H L}=0.69\left(3 R_{N} C\right)=0.69(3)(10 \mathrm{k})(50 \mathrm{fF})=1.035 \mathrm{~ns}$
Minimum high-to-low delay: $\tau_{H L}=0.69\left(R_{N}+R_{N}+R_{N} \| R_{N}\right) C=0.69(10 k+10 k+5 k) 50 f F=0.865 n S$
Data dependent range: $2.5 \tau_{I N V} \leq \tau \leq 3 \tau_{I N V}$

Gate 2

Maximum high-to-low delay: $\tau_{H L}=0.69\left(2 R_{N} C\right)=0.69(2)(10 k)(50 f F)=0.69 n s$
Minimum high-to-low delay: $\tau_{H L}=0.69\left(2 R_{N} \| R_{N}\right) C=0.69(20 k \| 10 k) 50 f F=0.23 n s$
Data dependent range: $\frac{2}{3} \tau_{I N V} \leq \tau \leq 2 \tau_{I N V}$
(c)

Gate 1

Maximum low-to-high delay: $\tau_{L H}=0.69\left(2 R_{P} C\right)=0.69(2)(10 k)(50 f F)=0.69 n s$
Minimum low-to-high delay: $\tau_{L H}=0.69\left(2 R_{P}\left\|R_{P}\right\| R_{P}\right) C=0.69(20 k\|10 k\| 10 k) 50 f F=0.138 n$
Data dependent range: $0.4 \tau_{I N V} \leq \tau \leq 2 \tau_{I N V}$

Gate 2

Maximum low-to-high delay: $\tau_{L H}=0.69\left(2 R_{P} C\right)=0.69(2)(10 k)(50 f F)=0.69 \mathrm{~ns}$
Minimum low-to-high delay: $\tau_{L H}=0.69\left(R_{P} \| R_{P}+R_{p}\right) C=0.69(5 k+10 k) 50 f F=0.518 n s$
Data dependent range: $1.5 \tau_{I N V} \leq \tau \leq 2 \tau_{I N V}$
(d)

The overall worst-case delay for Gate 1 is $\max \left(\tau_{H L}, \tau_{L H}\right)=3 \tau_{I N V}$
The overall worst-case delay for Gate 2 is $\operatorname{ax}\left(\tau_{H L}, \tau_{L H}\right)=2 \tau_{I N V}$
(e)

The fastest possible way for a signal to propagate is if no changes occur at the output when the input changes. For example, $\mathrm{A} 2=$ $0, \mathrm{~B} 2=1, \mathrm{C} 2=0$ initially. Then $\mathrm{A} 2=0, \mathrm{~B} 2=0, \mathrm{C} 2=0$. The output remains at 1 .

However, if one wants to consider the second-fastest propagation delay, a possibility is if $\mathrm{A} 2=1, \mathrm{~B} 2=0, \mathrm{C} 2=0$, then $\mathrm{A} 2=1, \mathrm{~B} 2$ $=1, \mathrm{C} 2=1$.

Both answers are valid.
(f)

The slowest possible way for a signal to propagate is if the maximum resistance is present at the output. For example, A2 $=1$, B2 $=1, \mathrm{C} 2=1$ initially. Then $\mathrm{A} 2=0, \mathrm{~B} 2=1, \mathrm{C} 2=0$.

11.3 Lumped Logic. Vs. Pipelined Logic.

(a) Each of the latches, consist of two stages. The first stage of the latch is transparent when the clock is low $(O=0)$ and has the delay of $(0.69 \times 2 \times R N C)$ or $(0.69 \times 2 \times R P C)$ depending on if it is going from H to L or vice versa. The second stage of the latch is transparent when clock goes high, and has the delay of $(0.69 \times 2 \times$ RPC $)$ or $(0.69 \times 2 \times$ RNC $)$ depending on the transition. Overall, since the outputs of the two stages are compliment, the overall delay of a latch is: $(0.69 \times 2 \times \mathrm{RUC})+(0.69 \times 2 \times \mathrm{RDC})=0.69 \times 2 \times \mathrm{C}(\mathrm{RU}+\mathrm{RD})$, which is 4 inverter delays.
(b)

(c)

10.4 Latency and Throughput of Lumped and Pipelined Logic
(a)

High Delay $=$ Second-half Delay from first latch + Delay from Gate 1 (worst-case) + Delay from Gate $2($ worst-case $)=2+3+2=$ 7 inverter delays for the minimum amount of the time the clock must stay high

Low De lay $=$ First-half Delay from Latch $2=\mathbf{2}$ inverter delays for the minimum amount of the time the clock must stay
(b) From latch 1 to latch 2 high delay $=$ Second-half Delay from first latch + Delay from Gate $1($ worst-case $)=2+3=\mathbf{5}$ inverter delays for the minimum amount of the time the clock must stay high

Low delay $=$ Delay from first-half of latch $2=2$ inverter delays for the minimum amount of the time the clock must stay
From latch 2 to latch 3 delay = Delay from second-half of second latch + Delay from Gate 3 (worst-case) $=2+2=4$ inverter delays for the minimum amount of the time the clock must stay high

Low delay $=$ Delay from first-half of latch $3=2$ inverter delays for the minimum amount of the time the clock must stay low
Note: The clock must stay low for 5 inverter delays since the delay from latch 1 to latch 2 is the limiting case for the entire system. If the clock was high only for 4 inverter delays, the operation from latch 1 to latch 2 would fail.
(c) Latency $($ lumped $)=$ Second-Half Delay from first latch + Delay from Gate 1 (worst-case) + Delay from Gate 2 (worst-case) + First-half Delay from Latch $2+$ Second-half Delay from Latch $2=2+2+3+2+2=\mathbf{1 1}$ inverter delays (9 inverter delays if we drop the second-half delay from latch 2 by convention shown in the lecture)

The pipelined latency is a bit tricky because it's not a simple matter of adding all the delays leading to the output. The clock is assumed to be clocked as determined in part b . Thus, $\mathrm{T}_{\text {HIGH }}=5$ and $\mathrm{T}_{\text {LOW }}=2$.

Latency (pipelined; including the last latch) $=$ Second-Half Delay from first latch $+\operatorname{Max}($ Gate 1 worst delay, Gate 2 worst delay $)+$ First-half delay from latch $2+$ Second-half delay from latch $2+\operatorname{Max}($ Gate 1 worst delay, Gate 2 worst delay + First-half delay from latch $3+$ Second-half delay from latch $3=2+3+2+2+3+2+2=2 *\left(\mathrm{~T}_{\text {LOW }}+\mathrm{T}_{\mathrm{HI}}\right)=\mathbf{1 6}$ inverter delays ($\mathbf{1 4}$ inverter delays if we drop the second-half delay from latch 3 by convention shown in lecture)

* Latency is usually defined going all the way to the output, however in this class we will drop the second-half delay from the output latch
(d) Minimum clock period (lumped) $=\mathrm{T}=\mathrm{T}_{\mathrm{HIGH}}+\mathrm{T}_{\text {LOW }}=7+2=9$ inverter delays frequency $=1 / \mathrm{T}=1 /(9 * 345 \mathrm{pS})=0.32 \mathrm{Ghz}$

Minimum clock period (pipelined) $=\mathrm{T}=\mathrm{T}_{\text {HIGH }}+\mathrm{T}_{\text {LOW }}=5+2=7$ inverter delays
Frequency $=1 / \mathrm{T}=1 /(7 * 345 \mathrm{pS})=0.41 \mathrm{Ghz}$
Pipelining increases throughput of data in digital circuits!

