

EECS 42 Intro. electronics for CS Spring 2003

Lecture 3: 01/27/03 A.R. Neureuther Version Date 01/30/03

WHAT IF THE NET CURRENT WERE NOT ZERO?

Suppose imbalance in currents is $1\mu A = 1 \mu C/s$ (net current entering node)

Assuming that q = 0 at t = 0, the charge increase is 10^{-6} C each second

or $10^{-6}/1.6 \times 10^{-19} = 6 \times 10^{12}$ charge carriers each second

But by definition, the capacitance of a node to ground is ZERO because we show any capacitance as an explicit circuit element (branch). Thus, the voltage would be infinite (Q = CV).

Something has to give! In the limit of zero capacitance the accumulation of charge would result in infinite electric fields ... there would be a spark as the air around the node broke down.

Charge is transported around the circuit branches (even stored in some branches), but it doesn't pile up at the nodes!

EECS 42 Intro. electronics for CS Spring 2003	Lecture 3: 01/27/03 A.R. Neureuther
	Version Date 01/30/03
SIGN CONVENTIONS FOR SUMMING CURRENTS	
Kirchhoff's Current Law (KCL)	
Sum of currents entering node = sum of currents leaving node	
Use <u>reference directions</u> to determine "entering" and "leaving" currents <u>no concern</u> about actual polarities	
KCL yields one equation per node	

Alternative statements of KCL

- 1 "Algebraic sum" of currents <u>entering</u> node = 0
 - where "algebraic sum" means currents leaving are included with a minus sign
- 2 "Algebraic sum" of currents leaving node = 0 where currents entering are included with a minus sign

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther		
Version Date 01/30/03 BASIC CIRCUIT ELEMENTS		
Voltage SourceCurrent Source	(always supplies some constant given voltage - like ideal battery)	
	(always supplies some constant given current)	
 Resistor Wire	(Ohm's law)	
	("short" – no voltage drop)	
Capacitor	(capacitor law – based on energy storage in electric field of a dielectric S&O 5.1)	
• Inductor	(inductor law – based on energy storage in magnetic field in space S&O 5.1)	
Convright 2001. Resents of University of California		

