Version Date 01/30/03

EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture \#3

- Kirchhoff's Laws
- Ideal independent sources
- Resistors

http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther Game Plan 01/22/03

Monday 01/27/03

\square Electrical Quantities
Schwarz and Oldham: 1.3-1.4
Today 01/29/03

- Kirchhoff Laws

Schwarz and Oldham: 2.1-2.2
Next (3rd) Week
\square Capacitors, inductors, I vs. V Schwarz and Oldham: 5.1, 2.2, 3.1
\square Power and Energy Schwarz and Oldham: 5.1, 2.2, 3.1

Problem Set \#2 - Out 1/27/03 - Due 2/5/03 2:30 in box in 240 Cory 2.1 Flow; 2.2 KCL; 2.3 KVL; 2.4 resistor circuit; 2.5 Power

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther
Version Date 01/30/03

WHAT IF THE NET CURRENT WERE NOT ZERO?
Suppose imbalance in currents is $1 \mu \mathrm{~A}=1 \mu \mathrm{C} / \mathrm{s}$ (net current entering node) Assuming that $\mathrm{q}=0$ at $\mathrm{t}=0$, the charge increase is $10^{-6} \mathrm{C}$ each second or $\quad 10^{-6} / 1.6 \times 10^{-19}=6 \times 10^{12}$ charge carriers each second

But by definition, the capacitance of a node to ground is ZERO because we show any capacitance as an explicit circuit element (branch). Thus the voltage would be infinite ($\mathrm{Q}=\mathrm{CV}$)

Something has to give! In the limit of zero capacitance the accumulation of charge would result in infinite electric fields ... there would be a spark as the air around the node broke down.

Charge is transported around the circuit branches (even stored in some branches), but it doesn't pile up at the nodes!

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther
 Capacitor at a Node
 Version Date 01/30/03

Circuit with several branches, including a capacitor

(Sum of currents entering node) - (Sum of currents leaving node) $=0$ $q=$ charge stored at node is zero. If charge is stored, for example in the capacitor shown as branch 3, the charge is accounted for as the timeintegral of i_{3}. Thus the charge is not over at the node; it is on the capacitor.

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther Version Date 01/30/03	
SIGN CONVENTIONS FOR SUMMING CURRENTS	
Kirchhoff's Current Law (KCL)	
Sum of currents entering node = sum of currents leaving node	
Use reference directions to determine "entering" and "leaving" currents ... no concern about actual polarities	
$\checkmark \mathrm{KCL}$ yields one equation per node	
Alternative statements of KCL	
1 "Algebraic sum" of currents entering node $=0$	
where "algebraic sum" means currents leaving are included with a minus sign	
2 "Algebraic sum" of currents leav where currents entering are in	$\text { node }=0$ ed with a minus sign

$$
\left.\begin{array}{llll}
\sum_{\text {IN }} \mathrm{i}_{\text {in }}=\sum_{\text {OUT }} \mathrm{i}_{\text {out }} & 24=-4+10+\mathrm{i} & \Rightarrow & \mathrm{i}=18 \mu \mathrm{~A} \\
\sum_{\text {ALL }} \mathrm{i}_{\text {in }}=0 & 24-(-4)-10-\mathrm{i}=0 & \Rightarrow & \mathrm{i}=18 \mu \mathrm{~A} \\
\sum_{\text {ALL }} \mathrm{i}_{\text {out }}=0 & -24-4+10+\mathrm{i}=0 & \Rightarrow & \mathrm{i}=18 \mu \mathrm{~A}
\end{array}\right\} \text { EQUIVALENT }
$$

Currents entering the node: $24 \mu \mathrm{~A}$
Currents leaving the node: $-4 \mu \mathrm{~A}+10 \mu \mathrm{~A}+\mathrm{i}$

Three statements of KCL

KIRCHHOFF'S CURRENT LAW EXAMPLE

$$
\begin{gathered}
24=10+(-4)+i \\
i=18 \mu A
\end{gathered}
$$

EECS 42 Intro. electronics for CS Spring 2003 \quad Lecture 3: 01/27/03 A.R. Neureuther

GENERALIZATION OF KCL TO SURFACES

Sum of currents entering and leaving any "black box" is zero

Could be a big chunk of
circuit in here, e.g.,
could be a "Black Box"
In other words there can be lots of nodes and branches inside the box.

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther BRANCH AND NODE VOLTAGES

The voltage across a circuit element is defined as the difference between the node voltages at its terminals

Specifying node voltages: Use one node as the implicit reference (the "common" node ... attach special symbol to label it)

Now single subscripts can label voltages:

$$
\text { e.g., } v_{b} \text { means } v_{b}-v_{e}, v_{a} \text { means } v_{a}-v_{e} \text {, etc. }
$$

EECS 42 Intro. electronics for CS Spring 2003 \quad Lecture 3: 01/27/03 A.R. Neureuther
Version Date 01/30/03
Example of the use of KCL

At node X :
Current into X from the left:

$$
\left(V_{1}-v_{X}\right) / R 1
$$

Current out of X to the right:

$$
v_{x} / R 2
$$

KCL: $\left(V_{1}-v_{X}\right) / R 1=v_{X} / R 2$
Given V_{1}, This equation can be solved for v_{X}
Of course we just get the same result as we obtained from our series resistor $v_{X}=V_{1} R 2 /(R 1+R 2) \quad$ formulation. (Find the current and multiply by R2)

EECS 42 Intro. electronics for CS Spring 2003 Lecture 3: 01/27/03 A.R. Neureuther	
KIRCHHOFF'S VOLTAGE LAW (KVL)	
The algebraic sum of the "voltage drops" around any "closed loop" is zero.	
Why? We must return to the same potential (conservation of energy).	
Voltage drop \rightarrow defined as the branch voltage if the + sign is encountered first; it is (-) the branch voltage if the - sign is encountered first ... important bookkeeping	
	"rise" or "step up" (negative drop)
Closed loop: Path beginning and ending on the same node	

EECS 42 Intro. electronics for CS Spring $2003 \quad$ Lecture 3: 01/27/03 A.R. Neureuther

BASIC CIRCUIT ELEMENTS

- Voltage Source
- Current Source
- Resistor (Ohm's law)
- Wire ("short" - no voltage drop)
- Capacitor (capacitor law - based on energy storage in electric field of a dielectric S\&O 5.1)
- Inductor (inductor law - based on energy storage in magnetic field in space $\mathrm{S} \& \mathrm{O}$ 5.1)

| EECS 42 Intro. electronics for CS Spring 2003 \quad Lecture 3: 01/27/03 A.R. Neureuther |
| :--- | :--- |
| IDEAL CURRENT SOURCE |

