EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture \#4

- Capacitors and Inductors
- Energy Stored in C and L
- Equivalent Circuits
- Thevenin
- Norton
http://inst.EECS.Berkeley.EDU/~ee42/

BASIC CIRCUIT ELEMENTS

- Voltage Source
- Current Source
(always supplies some constant given voltage - like ideal battery)
(always supplies some constant given current)
- Resistor (Ohm's law)
- Wire ("short" - no voltage drop)
- Capacitor (capacitor law - based on energy storage in electric field of a dielectric S\&O 5.1)
- Inductor
(inductor law - based on energy storage in magnetic field in space $\mathrm{S} \& \mathrm{O} 5.1$)

EECS 42 Intro. electronics for CS Spring 2003 \quad Lecture 4: 02/03/03 A.R. Neureuther

 ENERGY STORED IN A CAPACITORYou might think the energy (in Joules) is QV, which has the dimension of joules. But during charging the average voltage was only half the final value of V.

$$
\text { Thus, energy is }{ }^{\dagger}{ }_{Q V}={ }^{\dagger} C V^{2}
$$

EECS 42 Intro. electronics for CS Spring 2003
 Lecture 4: 02/03/03 A.R. Neureuther
 Version Date 02/02/03
 ENERGY STORED IN A CAPACITOR (cont.)

More rigorous derivation: During charging, the power flow is v. i into the capacitor, where i is into + terminal. We
integrate the power from $t=0(v=0)$ to $t=$ end $(v=V)$. The integrated power is the energy

$$
\mathrm{E}=\int_{\mathrm{t}=\mathrm{t}_{\text {Initial }}}^{\mathrm{t}=\mathrm{t}_{\text {Final }}} \mathrm{v} \cdot \mathrm{idt}=\int_{\mathrm{v}=\mathrm{V}_{\text {Initial }}}^{\mathrm{v}} \mathrm{v}=\mathrm{V}_{\text {Final }} \frac{\mathrm{dq}}{\mathrm{dt}} \mathrm{dt}=\begin{array}{r}
\mathrm{v}=\mathrm{V}_{\text {Final }} \\
\int_{\mathrm{V}}^{\mathrm{V}} \mathrm{~V} \text { Initial }
\end{array}
$$

but $d q=C d v$. (We are using small q instead of Q to remind us that it is time varying. Most texts use Q.)

$$
\mathrm{E}=\underset{\substack{\mathrm{v} \\=\mathrm{V}_{\text {Final }} \\ \int \mathrm{V}=\mathrm{V}_{\text {Initial }}}}{\mathrm{Cv}}=\frac{1}{2} \mathrm{CV}_{\text {Final }}{ }^{2}-\frac{1}{2} \mathrm{CV}_{\text {Initial }}^{2}
$$

Capacitance and Inductance

- Capacitors: two plate example; Store energy in the electric field $\mathrm{Q}=\mathrm{CV}, \mathrm{I}=\mathrm{C} \mathrm{dV} / \mathrm{dt}$ and $\mathrm{V}=(1 / \mathrm{C})$ integral of voltage
- Computer example 1 mA current charging 1 pF $V(t)=(I / C) t=\left(10-3 \mathrm{~A} / 10^{-12} \mathrm{~F}\right) \mathrm{t}=10^{9} \mathrm{~V} / \mathrm{st}$
- At D.C. time derivatives are zero $=>\mathrm{C}$ is open circuit
- C in parallel add; series $1 / \mathrm{C}=\operatorname{sum}\left(1 / \mathrm{C}_{\mathrm{i}}\right)$; short together (infinite current but conserve charge)
- Inductors: coil example; Store energy in the magnetic field Flux $=\mathrm{LI}, \mathrm{V}=\mathrm{L} \mathrm{dI} / \mathrm{dt}$ and $\mathrm{I}=(1 / \mathrm{L})$ (integral of voltage)
- At D.C. time derivatives are zero $=>\mathrm{L}$ is short circuit
- L in parallel $1 / \mathrm{L}=\operatorname{sum}\left(1 / \mathrm{L}_{\mathrm{i}}\right)$; series add; connect in series when have different currents $=>\mathrm{L}_{1} \mathrm{I}_{1}+\mathrm{L}_{2} \mathrm{I}_{2}=\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \mathrm{I}_{\text {NEW }}$

An adequately equivalent circuit is one that has an I vs. V graph that is identical to that of the original circuit.

[^0]Version Date 02/02/03

I vs. V and Equivalent Circuits

- I vs. V for ideal voltage source is a vertical line at $\mathrm{V}=\mathrm{V}_{\mathrm{SV}}$
- I vs. V for ideal current source is a horizontal line at $\mathrm{I}=\mathrm{I}_{\mathrm{SC}}$
- I vs. V for a circuit made up of ideal independent sources and resistors is a straight line.
- The simplest circuit for a straight line is an ideal voltage source and a resistor (Thevenin) or a current source and a parallel resistor (Norton)
- The easiest way to find the I vs. V line is to find the intercepts where $\mathrm{I}=0$ (open circuit voltage V_{T}) and where $\mathrm{V}=0$ (Short circuit current I_{N})
- The short-cut for finding the (slope) ${ }^{-1}=\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{N}}$ is to turn off all of the dependent sources to zero and find the remaining equivalent resistance between the terminals of the elements.

[^0]: Lecture 4: 02/03/03 A.R. Neureuther

