```
EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther
                                    Version Date 02/02/03
```


EECS 42 Introduction to Electronics for Computer Science
 Andrew R. Neureuther

Lecture \#5

- Nonlinear (NL) elements
- Graphical NL solutions
- Power for NL circuits
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther Example of I-V Graphs Version Date 02/02/03
Simple Circuit, e.g. voltage source + resistor.
If two circuit elements are in series the current is the same; clearly the total voltage will be the sum of the voltages i.e. $\mathrm{V}_{\mathrm{S}}+\mathrm{IR}$.

We can graph this on the I-V plane. We find the I-V graph of the combination by adding the voltages V_{S} and IR at each current I .
Lets do an example for $=2 \mathrm{~V}, \mathrm{R}=2 \mathrm{~K}$

Game Plan 02/05/03

Monday 02/03/03

- Capacitors and Inductors; Equivalent Sources Schwarz and Oldham: 5.1-5.2, 3.1

Wednesday 02/05/03

- N-L Elements; Graphical Solutions; Power Schwarz and Oldham: 3.2-3.4
Next (4th) Week
- RC Transient

Schwarz and Oldham: 8.1 plus Handouts

Problem Set \#3 - Out 2/2/03 - Due 2/12/03 2:30 in box near 275 Cory
3.1 and 3.2 charging capacitors; 3.3-3.5; Equivalent Circuits;

EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther Version Date 02/02/03

Simplest Equivalent Circuits

An adequately equivalent circuit is one that has an I vs. V graph that is identical to that of the original circuit.

EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther
 I-V Graphs as a method to solve circuits

We can find the currents and voltages in a simple circuit graphically. For example if we apply a voltage of 2.5 V to the two resistors of our earlier example:
We draw the I-V of the voltage and the I-V graph of the two resistors on the same axes. Can you guess where the solution is?

At the point where the voltages of the two graphs AND the currents are equal. (Because, after all, the currents are equal, as are the voltages.)

This is called the LOAD LINE method; it works for harder (non-linear) problems

We have a circuit containing a two-terminal non-linear element "NLE", and some linear components.

First replace the entire linear part of the circuit by its Thevenin equivalent (which is a resistor in series with a voltage source). We will learn how to do this in Lecture 11

Then define I and V at the NLE terminals (typically associated signs)

NOTE: In lecture 11 we will show that the circuit shown on the left is equivalent to a 200 K resistor in series with 2 V .

EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther

Power of Load-Line Method

We have a circuit containing a two-terminal non-linear element "NLE", and some linear components.

We will show in a few days that the entire linear part of the circuit can be replaced by an equivalent, called the Thevenin equivalent This equivalent circuit consists of a voltage source in series with a resistor. (Just like the example we just worked!).

So if we replace the entire linear part of the circuit by its Thevenin equivalent our new circuit consists of (1) a non-linear element, and (2) a simple resistor and voltage source in series.
If we are happy with the accuracy of graphical solutions, then we just graph the I vs V of the NLE and the I vs V of the resistor plus voltage source on the same axes. The intersection of the two graphs is the solution. (Just like the problem on page 6)

EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther

Example of Load-Line method (con't)
Given the graphical properties of two terminal non-linear circuit (i.e. the graph of a two terminal device)

And have this connected to a linear
(Thévenin) circuit
Whose I-V can also be graphed on the same axes ("load line")

EECS 42 Intro. electronics for CS Spring 2003 Lecture 4: 02/03/03 A.R. Neureuther
Power Calculation Review Version Date 02/02/03
Power is calculated the same way for linear and non-linear
elements and circuits.
For any circuit or element the dc power is I XV and, if associated signs
are used, represents heating for positive power or extraction of energy
for negative signs.
For example in the last example the NLE has a power of $+1 \mathrm{~V} \times 5 \mu \mathrm{~A}$ or
$5 \mu \mathrm{~W}$. It is absorbing power. The rest of the circuit has a power of -1 V
$X 5 \mu \mathrm{~A}$ or $-5 \mu \mathrm{~W}$, because the signs are unassociated. It is delivering
the $5 \mu \mathrm{~W}$ to the NLE.
So what it the power absorbed by the 200K resistor?
Answer: I X V is $+5 \mathrm{~mA} \times(5 \mathrm{~mA} \times 200 \mathrm{~K})=5 \mathrm{~mW}$. Then the voltage
source must be supplying a total of 10 mW . Can you show this?

