Version Date 02/19/03

EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture \#8 Node Equations

- Basic concept
- Generalization to supernodes
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. electronics for CS Spring 2003
Lecture 7: 02/19/03 A.R. Neureuther Version Date 02/19/03
 OF A RESISTOR

Another version of the same statement, and the one most important to us:

$$
\mathrm{i}=\left(\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{Y}}\right) / \mathrm{R} \text { (Ohm's law) }
$$ NOTE ORDER OF NODES: $\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{Y}}$!

EECS 42 Intro. electronics for CS Spring 2003 Lecture 7: 02/19/03 A.R. Neureuther

Game Plan 02/19/03

Wednesday 02/19/03

\square EC Response: Sketch/Trend, Exponential Solution Schwarz and Oldham: 2.3, 2.5,2.6
Next (6th) Week
\square Monday Node Equation App.; Midterm Review
\square Wednesday Quiz and Basic Logic: Sheila Ross

Next Next ($7^{\text {th }}$) Week:
\square Monday Logic
\square Wednesday: Midterm In Class, Closed Book
Problem Set \#5 - Out 2/19/03 - Due 2/26/03 2:30 in box in 240 Cory Node Analysis: basic, supernode, advanced; review: circuit analysis, transients

EECS 42 Intro. electronics for CS Spring 2003 Lecture 7: 02/19/03 A.R. Neureuther Version Date 02/19/03
FORMAL CIRCUIT ANALYSIS USING KCL: NODAL ANALYSIS
(Memorize these steps and apply them rigorously!)
1 Choose a Reference Node $\stackrel{\perp}{=}$
2 Define unknown node voltages (those not fixed by voltage sources)

3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements*)

4 Solve the set of equations (N equations for N unknown node voltages)

* With inductors or floating voltages we will use a modified Step 3:

The Supernode Method - see slide 10

EECS 42 Intro. electronics for CS Spring 2003 \quad Lecture 7: 02/19/03 A.R. Neureuther	
Systematic approaches to writing down KCL and KVL: Section 2.3 of Text - In particular use of KCL gives NODAL ANALYSIS	
Mathematical foundation is rigorous: EECS 104	
Nodal Analysis: Node voltages are the unknowns Mesh Analysis: Branch currents are the unknowns	Use one or the other for circuit analysis
We will do only nodal analysis - (because voltages make more convenient variables than currents) Thus omit Text Section 2.4 ; it is redundant.	

GENERALIZED VOLTAGE DIVIDER (solved without Nodal Analysis)

Circuit with several resistors in series

$$
\begin{aligned}
& \text { and } V_{3}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot V_{S S} \\
& \text { etc.. etc.. }
\end{aligned}
$$

We have two unknowns: V_{a} and V_{b}.
We obtain one equation from KCL at supernode: $\mathrm{I}_{1}-\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{2}}-\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}+\mathrm{I}_{2}=0$
We obtain a second "auxiliary" equation from the property of the voltage source: $\mathrm{V}_{\mathrm{LL}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}} \quad$ (often called the "constraint")
$\Rightarrow 2$ Equations \& 2 Unknowns

