EECS 42 Introduction to Electronics for Computer Science

Andrew R. Neureuther

Lecture \#9 Node Equations

- Recap and Checking Solutions
- Applications to parallel and bridge
- Midterm Exam Topics
- Thevenin/Norton Eq. Cir. Review http://inst.EECS.Berkeley.EDU/~ee42/

Game Plan 02/24/03

Monday 02/24/03
Node Equations: S\&O 2.3, 2.5,2.6; Exam Topics; Thevenin Review
Wednesday 02/26/03: Sheila Ross instructor
\square Quiz on Basic Circuit Analysis and TransientsLogic - Functions, Tables, Circuit Symbols 391-406
Next ($7^{\text {th }}$) Week:Monday 3/3: Brief Exam Review; Logic SynthesisMonday 3/3: TA Exam Review Session (247 Cory?)
\square Wednesday: Midterm In Class, Closed Book
Problem Set \#5 - Out 2/19/03 - Due 2/26/03 2:30 in box in 240 Cory; Node Analysis: basic, supernode, advanced; review: circuit analysis, transients No Problem Set Due $7^{\text {th }}$ week, Problem set $\# 6$ out Monday $3 / 3$ and due at 2:30 3/10 in box in 240 Cory

FORMAL CIRCUIT ANALYSIS USING KCL:

 NODAL ANALYSIS(Memorize these steps and apply them rigorously!)
1 Choose a Reference Node $\stackrel{\downarrow}{=}$
2 Define unknown node voltages (those not fixed by voltage sources)

3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements*)

4 Solve the set of equations (N equations for N unknown node voltages)

* With inductors or floating voltages we will use a modified Step 3:

The Supernode Method - see slide 10

EECS 42 Intro. electronics for CS Spring 2003
Lecture 9: 02/24/03 A.R. Neureuther
FLOATING VOLTAGE SOURCES (cont.) Version Date 02/24/03
Use a Gaussian surface to enclose the floating voltage source; write KCL for that surface

We have two unknowns: V_{a} and V_{b}.
We obtain one equation from KCL at supernode: $\mathrm{I}_{1}-\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{2}}-\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}+\mathrm{I}_{2}=0$
We obtain a second "auxiliary" equation from the property of the
voltage source: $\mathrm{V}_{\mathrm{LL}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}} \quad$ (often called the "constraint")
$\Rightarrow 2$ Equations \& 2 Unknowns

1 Choose reference node (can it be chosen to avoid floating voltage source?)
2 Label unknowns V_{a} and V_{b}
3 Equation at supernode: $\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{1}}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}+\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{2}} \rightarrow \mathrm{~V}_{\mathrm{a}}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)+\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{R}_{4}}=\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}$
4 Auxiliary equation: $\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{2} \xrightarrow{\mathrm{R}_{4}} \mathrm{R}_{2} \longrightarrow \mathrm{~V}_{\mathrm{a}} \quad-\mathrm{V}_{\mathrm{b}}=-\mathrm{V}_{2}$ Solve: $\mathrm{V}_{\mathrm{a}}\left(\frac{\mathrm{R}_{4}}{\mathrm{R}_{1}}+\frac{\mathrm{R}_{4}}{\mathrm{R}_{2}}+1\right)=\mathrm{V}_{1} \frac{\mathrm{R}_{4}}{\mathrm{R}_{1}}-\mathrm{V}_{2}$

SOLUTION: $\mathrm{V}_{\mathrm{a}}=0$
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{2}$
$\mathrm{V}_{\mathrm{b}}=12$

NODAL ANALYSIS EXAMPLE

Find V_{a}, V_{b} if $R_{1}=R_{2}=R_{3}=R_{4}=1 M \Omega$, and $V_{1}=V_{4}=1.5 \mathrm{~V}$ with $V_{L L}=1 \mathrm{~V}$

Solution: At supernode enclosing nodes a and b :
$\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{a}}\right) / \mathrm{R}_{1}-\mathrm{V}_{\mathrm{a}} / \mathrm{R}_{2}=\mathrm{V}_{\mathrm{b}} / R_{3}+\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{4}\right) / R_{4} \quad$ and
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{LL}} \quad$ Thus: $\quad \mathrm{V}_{\mathrm{a}}=0.25 \quad$ Be sure to check

Is $V_{a}=1.25$ and $V_{b}=0.25$ if $R_{1}=R_{2}=R_{3}=R_{4}=1 \mathrm{M} \Omega$, and $V_{1}=V_{4}=1.5 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{LL}}=1 \mathrm{~V}$????

KCL at the Supernode: $0.25-1.25+1.25-0.25=0$
Clearly the current into the supernode is zero and we have verified that the solution is correct. :

Version Date 02/24/03

Note: $I_{s s}=I_{1}+I_{2}$, i.e.,

$$
\mathrm{I}_{\mathrm{SS}}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{2}} \Rightarrow \mathrm{~V}_{\mathrm{X}}=\mathrm{I}_{\mathrm{SS}} \cdot \frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}}=\mathrm{I}_{\mathrm{SS}} \cdot \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

RESULT 1 EQUIVALENT RESISTANCE: $\mathrm{R}_{\|} \equiv \mathrm{R}_{1} \| \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
RESULT 2 CURRENT DIVIDER:

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{1}}=\mathrm{I}_{\mathrm{SS}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& \mathrm{I}_{2}=\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{2}}=\mathrm{I}_{\mathrm{SS}} \times \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
\end{aligned}
$$

IDENTIFYING SERIES AND PARALLEL COMBINATIONS

Use series/parallel equivalents to simplify a circuit before starting KVL/KCL

Please note the order of math operators here!

Some circuits must be analyzed (not amenable to simple inspection)

Special cases:

$$
\mathrm{R}_{3}=0 \mathrm{OR} \quad \mathrm{R}_{3}=\infty
$$

Example: $R_{3}=0 \Rightarrow R_{1}\left\|R_{2} ; R_{4}\right\| R_{5}$ in series;

$$
R_{e q}=R_{1}\left\|R_{2}+R_{4}\right\| R_{5}
$$

$$
\text { OR IF } R_{3}=\infty \Rightarrow\left(R_{1}+R_{5}\right) \|\left(R_{2}+R_{4}\right)
$$

First Midterm Exam: Topics

- Basic Circuit Analysis (KVL, KCL)
- Equivalent Circuits and Graphical Solutions for Nonlinear Loads
- Transients in Single Capacitor Circuits
- Node Analysis Technique and Checking Solutions

Exam is in class 3:10-4:03 PM, Closed book, Closed notes, Bring a calculator, Paper provided

I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS

Apply v, measure i, or vice versa

First consider change in V , eg $\mathrm{V}=2.5 \mathrm{~V}$, not 5 V

Now consider change in R (with V back at 5 V)

Consider how the graph changes with differences in V and R.

Clearly by varying V and R we can produce an arbitrary linear graph ... in other words this circuit can produce any linear graph

FINDING $V_{T}, R_{T} B Y$ MEASUREMENT
$1 V_{T}$ is the open-circuit voltage $V_{O C}$ (i.e., $i=0$)

2a) If we short the output clearly $I=-V_{T} / R_{T}$ thus R_{T} is the ratio of $V_{O C}$ to $-i_{S C}$, the short-circuit current

$$
\mathrm{R}_{\mathrm{T}}=-\frac{\mathrm{V}_{\mathrm{OC}}}{\mathrm{I}_{\mathrm{SC}}}
$$

2b) If $\mathrm{V}_{\mathrm{T}}=0$, you need to apply test voltage, then

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{V}_{\mathrm{TEST}}}{\mathrm{i}}
$$

1 Calculate $\mathrm{V}_{\mathrm{OC}} . \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OC}}$

2 Turn off all independent sources and find equivalent R at terminals

Find the Thévenin and Norton equivalents of:

equivalent to

and equivalent to

EECS 42 Intro. electronics for CS Spring 2003
Lecture 9: 02/24/03 A.R. Neureuther
EXAMPLE 1, Continued Version Date 02/24/03
In what sense is this circuit equivalent to these?

They have identical I-V characteristics and therefore have
The same open circuit voltage
The same short circuit current

EXAMPLE 2

Find the Thévenin and Norton equivalents of:

equivalent to

and equivalent to

EECS 42 Intro. electronics for CS Spring 2003
Lecture 9: 02/24/03 A.R. Neureuther
Version Date 02/24/03

EXAMPLE 3

Find the Thévenin and Norton equivalents of:

equivalent to

and equivalent to

