EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture #9 Node Equations

- Recap and Checking Solutions
- Applications to parallel and bridge
- Midterm Exam Topics
- Thevenin/Norton Eq. Cir. Review http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

Version Date 02/24/03

Game Plan 02/24/03

Monday 02/24/03

□ Node Equations: S&O 2.3, 2.5,2.6; Exam Topics; Thevenin Review

Wednesday 02/26/03: Sheila Ross instructor

- ☐ Quiz on Basic Circuit Analysis and Transients
- ☐ Logic Functions, Tables, Circuit Symbols 391-406

Next (7th) Week:

- ☐ Monday 3/3: Brief Exam Review; Logic Synthesis
- ☐ Monday 3/3: TA Exam Review Session (247 Cory?)
- ☐ Wednesday: Midterm In Class, Closed Book

Problem Set #5 – Out 2/19/03 - Due 2/26/03 2:30 in box in 240 Cory; Node Analysis: basic, supernode, advanced; review: circuit analysis, transients No Problem Set Due 7th week, Problem set #6 out Monday 3/3 and due at 2:30 3/10 in box in 240 Cory

Version Date 02/24/03

FORMAL CIRCUIT ANALYSIS USING KCL: NODAL ANALYSIS

(Memorize these steps and apply them rigorously!)

- 1 Choose a Reference Node \pm
- 2 Define unknown node voltages (those not fixed by voltage sources)
- 3 Write KCL at each unknown node, expressing current in terms of the node voltages (using the constitutive relationships of branch elements*)
- 4 Solve the set of equations (N equations for N unknown node voltages)
- * With inductors or floating voltages we will use a modified Step 3: The Supernode Method see slide 10

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

FLOATING VOLTAGE SOURCES (cont.)

Version Date 02/24/03

Use a Gaussian surface to enclose the floating voltage source; write KCL for that surface supernode

We have two unknowns: V_a and V_b.

We obtain one equation from KCL at supernode: $I_1 - \frac{V_a}{R_2} - \frac{V_b}{R_4} + I_2 = 0$

We obtain a second "auxiliary" equation from the property of the voltage source: $V_{LL} = V_b - V_a$ (often called the "constraint")

⇒ 2 Equations & 2 Unknowns

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

ANOTHER EXAMPLE

Version Date 02/24/03

- 1 Choose reference node (can it be chosen to avoid floating voltage source?)
- 2 Label unknowns V_a and V_b

3 Equation at supernode:
$$\frac{V_1 - V_a}{R_1} = \frac{V_b}{R_4} + \frac{V_a}{R_2}$$
 \rightarrow $V_a(\frac{1}{R_1} + \frac{1}{R_2}) + \frac{V_b}{R_4} = \frac{V_1}{R_1}$
4 Auxiliary equation: $V_b - V_a = V_2$

Solve:
$$V_a(\frac{R_4}{R_1} + \frac{R_4}{R_2} + 1) = \frac{V_1 \frac{R_4}{R_1} - V_2}{R_1}$$
 SOLUTION: $V_a = 0$

$$V_b = V_2 + V_2$$

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

Version Date 02/24/03

NODAL ANALYSIS EXAMPLE

Find V_a , V_b if $R_1 = R_2 = R_3 = R_4 = 1M\Omega$, and $V_1 = V_4 = 1.5V$ with $V_{LL} = 1V$

Solution: At supernode enclosing nodes a and b:

$$(V_1 - V_a)/R_1 - V_a/R_2 = V_b/R_3 + (V_b - V_4)/R_4$$
 and

$$V_b = V_a + V_{LL}$$
 Thus: $V_a = 0.25$ Be sure to check $V_b = 1.25$ answer with KCL!

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

CHECK ANSWER WITH KCL Version Date 02/24/03

Is V_a= 1.25 and V_b = 0.25 if R₁= R₂ = R₃ = R₄ = 1M Ω , and V₁ = V₄ =1.5V with V_{LL} = 1V ????

KCL at the Supernode: 0.25 -1.25 + 1.25 - 0.25 =0

Clearly the current into the supernode is zero and we have verified that the solution is correct. :

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

RESISTORS IN PARALLEL

Version Date 02/24/03

- 1 Select Reference Node
- 2 Define unknown node voltages

Note:
$$I_{ss} = I_1 + I_2$$
, i.e.,
$$I_{SS} = \frac{V_X}{R_1} + \frac{V_X}{R_2} \implies V_X = I_{SS} \cdot \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = I_{SS} \cdot \frac{R_1 R_2}{R_1 + R_2}$$

RESULT 1 EQUIVALENT RESISTANCE: $R_{\parallel} \equiv R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}$

RESULT 2 CURRENT DIVIDER:
$$I_1 = \frac{V_X}{R_1} = I_{SS} \times \frac{R_2}{R_1 + R_2}$$

$$I_2 = \frac{V_X}{R_2} = I_{SS} \times \frac{R_1}{R_1 + R_2}$$

Lecture 9: 02/24/03 A.R. Neureuther

First Midterm Exam: Topics

- Basic Circuit Analysis (KVL, KCL)
- Equivalent Circuits and Graphical Solutions for Nonlinear Loads
- Transients in Single Capacitor Circuits
- Node Analysis Technique and Checking Solutions

Exam is in class 3:10-4:03 PM, Closed book, Closed notes, Bring a calculator, Paper provided

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Version Date 02/24/03 I-V CHARACTERISTICS OF LINEAR TWO-TERMINAL NETWORKS Consider how the graph changes with differences in V and R. Unassociated i(mA) **Unassociated** Apply v, measure i, (i defined out) or vice versa If V = 2.5VFirst consider change in V, eg V= 2.5V, not 5V Now consider change in R (with V back at 5V)

Clearly by varying V and R we can produce an arbitrary linear graph

... in other words this circuit can produce any linear graph

Version Date 02/24/03

FINDING V_T, R_T BY MEASUREMENT

1 V_T is the open-circuit voltage V_{OC} (i.e., i = 0)

2a) If we short the output clearly I = - V_T/R_T thus R_T is the ratio of V_{OC} to - i_{SC} , the short-circuit current

$$R_{T} = -\frac{V_{OC}}{I_{SC}}$$

2b) If $V_T = 0$, you need to apply test voltage, then

$$R_T = \frac{V_{TEST}}{i}$$

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 9: 02/24/03 A.R. Neureuther

Version Date 02/24/03

FINDING V_T , R_T BY ANALYSIS

- 1 Calculate V_{OC} . $V_T = V_{OC}$
- 2 Turn off all independent sources and find equivalent R at terminals

