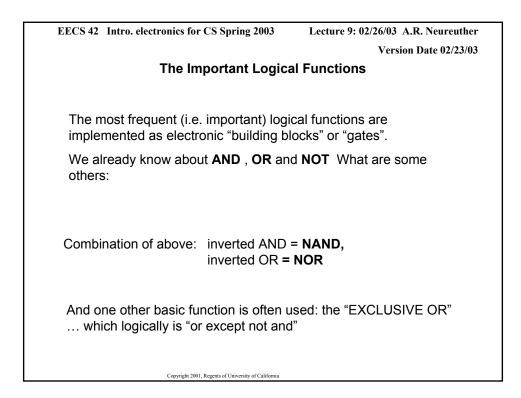


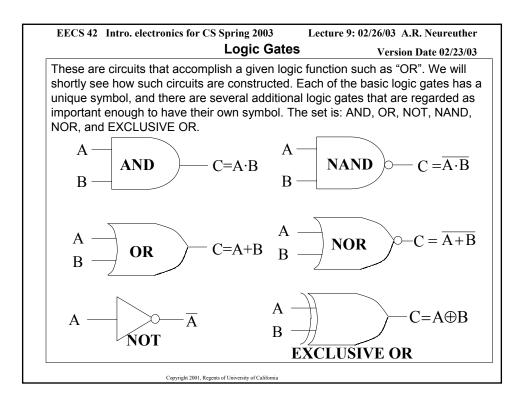
EECS 42 Intro. electronics for C	CS Spring 2003	Lecture 9: 02/26/03 A.	R. Neureuther		
Logic Functions Version Date 02/23/03					
Logic Expression: To create logic values we will define "True" , as Boolean 1 and "False" , as Boolean 0.					
Moreover we can associate a logic variable with a circuit node. Typically we associate logic 1 with a high voltage (e.g. 2V) and and logic 0 with a low voltage (e.g. 0V).					
Example: The logic variable H is true (H=1) if (A and B and C are 1) or T is true (logic 1), where all of A,B,C and T are also logical variables.					
Logic Statement:	H = 1 if A and B	and C are 1 or T is 1.			
We use "dot" to designate logical "and" and "+" to designate logical or in switching algebra. So how can we express this as a Boolean Expression?					
Boolean Expression:	$H = (A \cdot B \cdot C)$	+ T			
Note that there is an order of operation, just as in math, and AND is performed before OR. Thus the parenthesis are not actually required here.					
Copyright 2001, R-	egents of University of California				

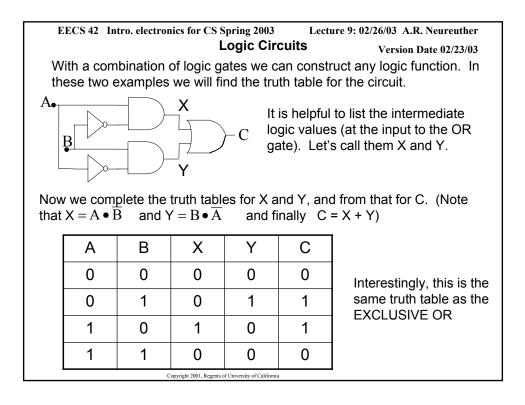
Lecture 9: 02/26/03 A.R. Neureuther EECS 42 Intro. electronics for CS Spring 2003 Version Date 02/23/03 Logical Expressions Standard logic notation : Examples: $X = A \cdot B$; $Y = A \cdot B \cdot C$ AND: "dot" OR : "+ sign" Examples: W = A+B ; Z = A+B+C "bar over symbol for complement" Example: $Z = \overline{A}$ NOT: With these basic operations we can construct any logical expression. Order of operation: NOT, AND, OR (note that negation of an expression is performed after the expression is evaluated, so there is an implied parenthesis, e.g. $\overline{A \bullet B}$ means $\overline{(A \bullet B)}$. Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003	Lecture 9: 02/26/03 A.R. Neureuther				
	Version Date 02/23/03				
Logic Function Example					
• Boolean Expression: $H = (A \cdot B \cdot C)$	+ T				
This can be read H=1 if (A and B and C	Care 1) or T is 1, or				
H is true if all of A,B,and C are true, or T is true, or					
The voltage at node H will be high if the input voltages at nodes A, B and C are high or the input voltage at node T is high					
Copyright 2001, Regents of University of California					


EECS 42 Intro. electronics for CS Spring 2003 Lecture 9: 02/26/03 A.R. Neureuther				
Version Date 02/23/03				
Logic Function Example 2				
You wish to express under which conditions your burglar alarm goes off (B=1):				
If the "Alarm Test" button is pressed (A=1)				
OR if the Alarm is Set (S=1) AND { the door is opened (D=1) OR the trunk is opened (T=1)}				
Boolean Expression: B = A + S(D + T)				
This can be read B=1 if A = 1 or S=1 AND (D OR T =1), i.e.				
B=1 if {A = 1} or {S=1 AND (D OR T =1)}				
or				
B is true IF {A is true} OR {S is true AND D OR T is true}				
or				
The voltage at node H will be high if {the input voltage at node A is high} OR {the input voltage at S is high and the voltages at D and T are high}				
Copyright 2001, Regents of University of California				

EECS 42 Intro. electronics	for CS Spring 20	03 Lec		5/03 A.R. Neureuther
Evaluation of L	ogical Expr	secione w		Version Date 02/23/03
Iruth Table	e for Logic Ex	pression	H = (A ·	B · <i>C</i>) + T
А	В	С	Т	Н
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
Copyright	2001, Regents of University of Cal	lifornia		


 EECS 42 Intro. electronics for CS Spring 2003
 Lecture 9: 02/26/03 A.R. Neureuther Version Date 02/23/03


 Evaluation of Logical Expressions with "Truth Tables"
 The Truth Table completely describes a logic expression

 In fact, we will use the Truth Table as the fundamental meaning of a logic expression.
 Two logic expressions are equal if their truth tables are the same

EECS 42 Intro. electronics for CS Spring 2	2003 Lecture 9: 02/26/03 A.R. Neureuther			
	Version Date 02/23/03			
Some Important Logical Functions				
• "AND"	$A \cdot B$ (or $A \cdot B \cdot C$)			
• "OR"	A+B (or $A+B+C+D$)			
• "INVERT" or "NOT"	not A (or \overline{A})			
• "not AND" = NAND	\overline{AB} (only 0 when A and $B=1$)			
• "not OR" = NOR				
• exclusive OR = XOR	$A \oplus B$ (only 1 when A, B differ)			
Copyright 2001, Regents of University of California				

