EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture \# 12 Physical Limits of Logic

- Timing Diagrams
- capacitance Loading
http://inst.EECS.Berkeley.EDU/~ee42/

EECS 42 Intro. electronics for CS Spring 2003 Lecture 12: 03/10/03 A.R. Neureuther

Game Plan 03/10/03

Monday 03/10/04
Monday: Physical Limits of Logic (11.3, 11.4 pp 403422)

Wednesday 03/12/03:
\square Dependent Sources (4.1 and 4.3)
Next (9 ${ }^{\text {th }}$) Week

- Monday: Circuit analysis with dependent sources (4.1-4.3)
- Wednesday: Comparators and op-amps (handout)

Problem set \#6: out Monday 3/3 and due at 2:30 3/10 in box in 240 Cory logic functions, truth tables, synthesis, timing diagram

Problem set \#7: out Monday 3/10 and due at 2:30 3/10 in box in 240 Cory - timing diagram, ca

Now we complete the truth tables for X and Y , and from that for C . (Note that $X=A \bullet \bar{B} \quad$ and $Y=B \bullet \bar{A} \quad$ and finally $\quad C=X+Y$)

A	B	X	Y	C
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

Interestingly, this is the same truth table as the EXCLUSIVE OR

EECS 42 Intro. electronics for CS Spring 2003
Lecture 12: 03/10/03 A.R. Neureuther Version Date 03/09/03
What Are Some Limitations of Digital?

It takes a lot of bits to represent even simple audio signals and if we convert a real-time audio signal to digital, we need to transmit a lot of bits every second.
Example: An ordinary audio signal is sampled every $50 \mu \mathrm{~s}$ (to achieve 10 KHz frequency performance) and evaluated (converted to digital form) to an accuracy of 1 part in 10,000. Every sample requires how many bits?
$2^{13}=8,192$ and $2^{14}=16,384$ so we need 14 bits for each sample. Now we need to transmit these bits 20,000 times per second. The bit rate is 280,000 baud!\}

The transmission of digital signals as pulses through circuits and over transmission media leads to pulse degradation, just as analog signals are degraded. As a consequence, we must (a) detect and regenerate the signa before it gets "buried in the noise," and (b) accept that propagation delays are intrinsic to signal flow, and take these delays into account in our design (e.g., to avoid making a control decision based on a piece of information that has not yet arrived!). The RC transient lectures treated pulse degradation in real circuits quantitatively.

EECS 42 Intro. electronics for CS Spring 2003 Lecture 12: 03/10/03 A.R. Neureuther LOGIC GATE DELAY τ_{D}
 Version Date 03/09/03

Time delay τ_{D} occurs between input and output: "computation" is not instantaneous
Value of input at $t=0^{+}$determines value of output at later time $t=\tau_{\mathrm{D}}$

EECS 42 Intro. electronics for CS Spring 2003 Lecture 12: 03/10/03 A.R. Neureuther Version Date 03/09/03 PHYSICAL LIMITATIONS OF LOGIC GATES

- Computer Datapath: Boolean algebraic functions using binary variables
- Symbolic representation of functions using logic gates

NAND

However:

- Every node has capacitance and interconnects have resistance It takes time to charge these capacitances.

Thus, output of all circuits, including logic gates is delayed from input.

