EECS 42 Intro. electronics for CS Spring 2003

Lecture 14: 03/17/03 A.R. Neureuther

Version Date 03/16/03

EECS 42 Introduction to Electronics for Computer Science

Andrew R. Neureuther

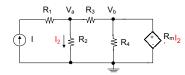
Lecture # 14 Circuit analysis with dependent sources (4.1-4.3)

- A) Node Equations
- **B)** Equivalent Sources
- C) Amplifier Parameters:

 $Gain,\,R_{IN},\,R_{OUT}$

D)Non-Ideal Op-Amp Model

http://inst.EECS.Berkeley.EDU/~ee42/


Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 14: 03/17/03 A.R. Neureuther

Version Date 03/16/03

EXAMPLE OF NODAL ANALYSIS WITH DEPENDENT SOURCES

Standard technique, except an additional equation is needed if the dependent variable is an unknown current as here. Note Vb is redundant.

$$I = V_a / R_2 + (V_a - R_m I_2) / R_3$$
 and $I_2 = V_a / R_2$

Solving:
$$I = V_a (1/R_2 + 1/R_3 - R_m/R_2 R_3)$$

So $V_a = I R_2 R_3 / (R_2 + R_3 - R_m)$

Consider 2001 Researce of University of Coliffornia

EECS 42 Intro. electronics for CS Spring 2003

ecture 14: 03/17/03 A.R. Neureuther

Version Date 03/16/03

Game Plan 03/17/03

Monday 03/17/04

 Monday: Circuit analysis with dependent sources (4.1-4.2)

Wednesday 03/19/03:

☐ Comparators and op-amps (Comparator handout)

Next (10th) Week: After Spring Recess

- Monday: 3/31/03 Logic with State Dependent Device 593-595, 604-605
- □ Wednesday: 4/02/03 Logic Static: Voltage Transfer Characteristic 606, Handout

Problem set #7: out Wednesday 3/12 and due at 2:30 3/19 in box in 240 Cory – basic dependant sources and Op-Amp circuits

Problem set #8: Half-Set - out Monday 3/17 and due at 2:30 4/02 in box in 240 Cory – input/output impedance, comparators

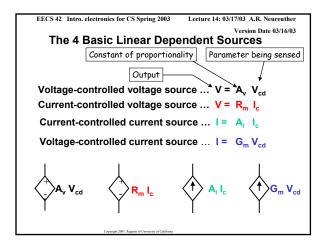
Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

14: 03/17/03 A.R. Neureuther

Version Date 03/16/03

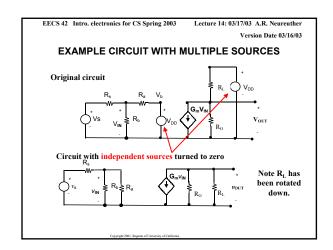
THEVENIN EQUIVALENT WITH DEPENDENT SOURCES

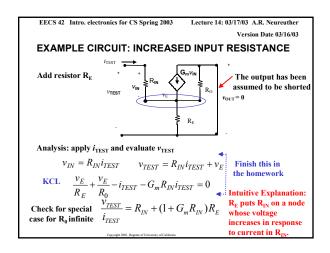

Method 1: Use V_{oe} and I_{se} as usual to find V_T and R_T (and I_N as well)

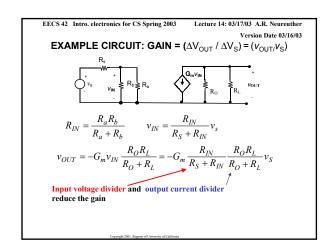
Method 2: To find R_T by the "ohmmeter method" turn off only the *independent* sources; let the dependent sources just do their thing.

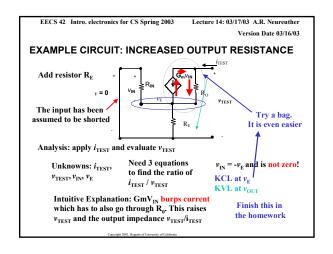
See examples in text (such as Example 4.3).

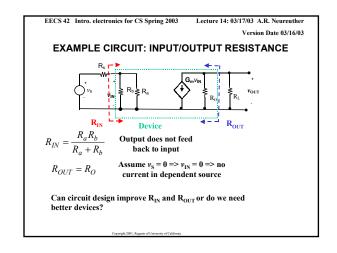
This method also works when computing incremental signals such as a change in the source V_S (given by ΔV_S or ν_S) produces a change in V_{IN} or V_{OUT} , (given by ΔV_{IN} or ΔV_{OUT} also written ν_{IN} and ν_{OUT}), and their ratio called the small-signal gain $(\Delta V_{OUT}/\Delta V_S)$ or (ν_{OUT}/ν_S)


Copyright 2001, Regents of University of California




EECS 42 Intro. electronics for CS Spring 2003 Lecture 14: 03/17/03 A.R. Neureuther Version Date 03/16/03 NODAL ANALYSIS WITH DEPENDENT SOURCES Example : Find Thévenin equivalent of stuff in red box.


We have a summary of the source I_{SS} with method 2 we first find open circuit voltage I_{SS} turned off.


You verify the solution: $I_{SR} = I_{SS} = I_{SS$

