EECS 42 Introduction to Electronics for Computer Science

Andrew R. Neureuther

Lecture \# 17 Logic with Complementary Devices S\&O pp. 607-611 (read for graphs and not physics or equations), plus Handout of Wed Lectures.
A)Discovering a Pull-Up Device
B) Designing a Pull-Up Device
C) EE 42 Pull-Up Device Model (42S_PMOS)
D) Composite $I_{\text {OUt }}$ vs. $V_{\text {OUt }}$
E) Voltage Transfer Function and $V_{\text {MID }}$ http://inst.EECS.Berkeley.EDU/~ee42/

Game Plan 04/02/03

Monday 03/31/04
\square Welcome back plus HW\#8 coaching
\square State Dependent Devices (Transistors)
\square Load Line, VTC, Pull Down Device (42S_NMOS)
Wednesday 04/02/03:

- Pull-Up Device (42S_PMOS)
\square VTC and $V_{\text {MID }}$
Next (11 ${ }^{\text {th }}$) Week:
Monday: 4/7/03 Logic Dynamic via Switched Resistor
\square Wednesday: 4/09/03 Quiz on dependent sources; then new material on Complementary Gates

Problem set \#9: Monday 3/31 and due at 2:30 4/09 in box in 240 Cory Static Analysis of an Inverter with simplified EE 42 Device Models

Composite Current Plot for the 42S_NMOS Circuit with $200 \mathrm{k} \Omega$ Load to Ground

Copyright 2001, Regents of University of California

Problems and Opportunities in Logic

Circuit Design

Problem \#1: Significant wasted current and power when $\mathrm{V}_{\text {OUT }}$ is low.
Problem \#2: High value of $V_{\text {OUT }}$ is adversely affected by a load resistor.

Missed Opportunity: The value of the input control signal is not used to adjust the state of the pull-up device.

What if : If the pull-up device could be a state-dependent device what kind of device would we want?

Pull-Up Device Design: Trial 1

Similar pull-up and pull-down states

Pull-Up Device Design: Trial 2

Complementary pull-up and pull-down states

$$
\text { EECS } 42 \text { Intro. electronics for CS Spring } 2003 \quad \text { Lecture 17: 04/02/03 A.R. Neureuther }
$$

Desirable Complementary Device Characteristics

We desire characteristics that are complementary for the pull-down and pull-up

$\mathbf{V}_{\text {IN }}$	Low	High
Pull-Down Current	Low not leak	High Discharge Output
Pull-Up Current	High Charge Output	Low not leak

Version Date 03/30/03

Designing the Complementary Device

Into This

The curve sets are very similar but have two key changes.
The creation of current with input State $\left(\mathrm{V}_{\text {IN }}\right)$ is reverse ordered (and also shifted).
The dependence on $V_{\text {out is }}$ reverse ordered and shifted by $V_{\text {DD }}$

Saturation Current NMOS Model

Current $I_{\text {OUT }}$ only flows when $V_{\text {IN }}$ is larger than the threshold value $V_{T D}$ and the current is proportional to $V_{\text {OUT }}$ up to $\mathbf{V}_{\text {out-Sat-d }}$ where it reaches the saturation current

$$
I_{O U T-S A T-D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D}
$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($\mathrm{V}_{\text {OUT-SAT-D }}$).
Example:
$\mathbf{k}_{\mathrm{D}}=25 \mu \mathrm{~A} / \mathrm{V}^{2} \quad$ Use these
$\mathrm{V}_{\mathrm{TD}}=1 \mathrm{~V} \quad$ values in the
$\mathbf{V}_{\text {OUt-SAt-d }}=1 \mathrm{~V}$ homework.
$I_{O U T-S A T-P D}=25 \frac{\mu A}{V^{2}}(3 V-1 V) 1 V=50 \mu A$

EECS 42 Intro. electronics for CS Spring 2003

Saturation Current 42S_PMOS Model

Current $I_{\text {OUT }}$ only flows when $V_{\text {IN }}$ is smaller than $V_{\text {DD }}$ minus the threshold value $V_{T U}$ and the current is proportional to $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OUT}}\right)$ up to $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {OUT-SAT-U }}\right)$ where it reaches the saturation current
$I_{\text {OUT-SAT-U }}=k_{U}\left(V_{D D}-V_{I N}-V_{T U}\right) V_{\text {OUT-SAT-U }}$

EECS 42 Intro. electronics for CS Spring 2003
Lecture 17: 04/02/03 A.R. Neureuther
Version Date 03/30/03
Transistor Inverter Example
It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.

Case \#1: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

The Output is Pulled-Down

Case \#2: $\mathrm{V}_{\text {IN }}=0$ The Output is Pulled-Up

EECS 42 Intro. electronics for CS Spring 2003 Lecture 17: 04/02/03 A.R. Neureuther
Version Date 03/30/03
Composite $\mathrm{I}_{\text {OUT }}$ vs. $\mathrm{V}_{\text {OUT }}$ to Find Points That Satisfies Both Devices for Each $\mathrm{V}_{\text {IN }}$

Voltage Transfer Function for the Complementary Logic Circuit

Method for Finding $\mathbf{V}_{\mathbf{M}}$

At V_{M},

1) $\mathbf{V}_{\text {OUT }}=V_{\text {IN }}=V_{M}$
2) Both devices are in saturation
3) $\mathbf{I}_{\text {OUt-SAT-D }}=I_{\text {OUt-SAT-U }}$

$$
\begin{gathered}
I_{\text {OUT-SAT-D }}=k_{D}\left(V_{I N}-V_{T D)}\right) V_{O U T-S A T-D} \\
=I_{\text {OUT-SAT-U }}=k_{U}\left(V_{D \mathbf{D}}-V_{I N}-V_{T U}\right) V_{O U T-S A T-U} \\
\\
\text { Substitute } \mathbf{V}_{\mathbf{M}} \\
\text { Solve for } \mathbf{V}_{\mathbf{M}}
\end{gathered}
$$

Example Result: When $\mathrm{k}_{\mathrm{D}}=\mathrm{k}_{\mathrm{P}}, \mathrm{V}_{\text {Out-Sat-d }}=\mathrm{V}_{\text {out-Sat-U }}$ and $\mathrm{V}_{\mathrm{TD}}=\mathrm{V}_{\mathrm{TV}}$, then $\mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{DD}} / \mathbf{2}$

