EECS 42 Intro. electronics for CS Spring 2003

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture # 17 Logic with Complementary Devices

S&O pp. 607-611 (read for graphs and not physics or equations), plus Handout of Wed Lectures.

- A) Discovering a Pull-Up Device
- B) Designing a Pull-Up Device
- C) EE 42 Pull-Up Device Model (42S_PMOS)
- D) Composite I_{OUT} vs. V_{OUT}
- E) Voltage Transfer Function and V_{MID} http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2001. Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Game Plan 04/02/03

Monday 03/31/04

- Welcome back plus HW#8 coaching
- □ State Dependent Devices (Transistors)
- □ Load Line, VTC, Pull Down Device (42S_NMOS)

Wednesday 04/02/03:

- ☐ Pull-Up Device (42S_PMOS)
- □ VTC and V_{MID}

Next (11th) Week:

- ☐ Monday: 4/7/03 Logic Dynamic via Switched Resistor
- ☐ Wednesday: 4/09/03 Quiz on dependent sources; then new material on Complementary Gates

Problem set #9: Monday 3/31 and due at 2:30 4/09 in box in 240 Cory – Static Analysis of an Inverter with simplified EE 42 Device Models

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Problems and Opportunities in Logic Circuit Design

Problem #1: Significant wasted current and

power when V_{OUT} is low.

Problem #2: High value of V_{OUT} is adversely

affected by a load resistor.

Missed Opportunity: The value of the input control signal is not used to adjust the state of the pull-up device.

> What if: If the pull-up device could be a state-dependent device what kind of device would we want?

Designing the Complementary Device

Make This

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Into This

The curve sets are very similar but have two key changes.

The creation of current with input State ($V_{\rm IN}$) is reverse ordered (and also shifted).

The dependence on $V_{OUT\, is}$ reverse ordered and shifted by V_{DD}

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Saturation Current NMOS Model

Current I_{OUT} only flows when V_{IN} is larger than the threshold value V_{TD} and the current is proportional to V_{OUT} up to $V_{OUT\text{-}SAT\text{-}D}$ where it reaches the saturation current

$$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($V_{OUT\text{-}SAT\text{-}D}$).

EECS 42 Intro. electronics for CS Spring 2003

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Saturation Current 42S_PMOS Model

Current I_{OUT} only flows when V_{IN} is smaller than V_{DD} minus the threshold value V_{TU} and the current is proportional to $(V_{DD}\text{-}V_{OUT})$ up to $(V_{DD}\text{-}V_{OUT\text{-}SAT\text{-}U})$ where it reaches the saturation current

$$I_{OUT-SAT-U} = k_U (V_{DD} - V_{IN} - V_{TU}) V_{OUT-SAT-U}$$

EECS 42 Intro. electronics for CS Spring 2003 Lec

Lecture 17: 04/02/03 A.R. Neureuther

Version Date 03/30/03

Method for Finding V_M

At V_M,

1)
$$V_{OUT} = V_{IN} = V_{M}$$

2) Both devices are in saturation

3)
$$I_{OUT-SAT-D} = I_{OUT-SAT-U}$$

$$I_{OUT-SAT-D} = k_D (V_{IN} - V_{TD}) V_{OUT-SAT-D}$$

$$= I_{OUT-SAT-U} = k_U (V_{DQ} - (V_{IN} - V_{TU})) V_{OUT-SAT-U}$$
Substitute V_M

Solve for $V_{\boldsymbol{M}}$

Example Result: When $k_D=k_P$, $V_{OUT\text{-}SAT\text{-}D}=V_{OUT\text{-}SAT\text{-}U}$ and $V_{TD}=V_{TU}$, then $V_M=V_{DD}/2$

Copyright 2001, Regents of University of California