EECS 42 Introduction to Electronics for Computer Science Andrew R. Neureuther

Lecture \# 18 Logic Transients

Handout of Mon Lecture.
A) Quiz 4/9 and Midterm 4/16 review
B) Transient as Capacitor Charging
C) Equivalent Resistance for MOS
D) Inverter Propagation Delay
E) Complementary MOS Operation
http://inst.EECS.Berkeley.EDU/~ee42/


```
EECS 42 Intro. electronics for CS Spring 2003 Lecture 18: 04/0703 A.R. Neureuther
            Game Plan 04/07/03
    Last Week: Static Logic: NMOS, CMOS; Graphical Solution and
        VTC) {All of this will be on 2 }\mp@subsup{}{}{\mathrm{ nd }}\mathrm{ Midterm)
    Monday 4/07/03:
        - Discharging Capacitors with NMOS and Eq. Resistance
        - CMOS Logic and Propagation delay
    Wednesday 04/09/03:
        QUIZ: Digital Blocks including timing diagrams and
        Dependent sources including Op-Amps
            - Worst Case CMOS delay, Cascade and CMOS Latch
    Next (14th) Week: Diodes and MOS Operation
Problem set #9: Monday 3/31 and due at 2:30 4/09 in box in 240 Cory -
Static Analysis of an Inverter with simplified EE 42 Device Models
No Problem set for 4/16 as Midterm 4/16: Lectures 1-17 with
emphasis on Lectures 10-17; Review Session Monday 5:30-7PM
```


EECS 42 Intro. electronics for CS Spring 2003 Lecture 18: 04/0703 A.R. Neureuther Version Date 04/05/03
Transient Gate Problem: Discharging and Charging Capacitance on the Output

EECS 42 Intro. electronics for CS Spring 2003 Lecture 18: 04/0703 A.R. Neureuther Version Date 04/05/03 Output Propagation Delay High to Low

When $\mathbf{V}_{\text {IN }}$ goes High $\mathbf{V}_{\text {out }}$ starts decreases with time
Assume that the necessary voltage swing to cause the next downstream gate to begin to switch is $\mathbf{V}_{\mathrm{DD}} / 2$ or 2.5 V .

That is the propagation delay τ_{HL} for the output to go from high to low is the time to go from $V_{D D}=5 \mathrm{~V}$ to to $\mathrm{V}_{\mathrm{DD}} / 2=2.5 \mathrm{~V}$

Method for Finding $\mathbf{V}_{\mathbf{M}}$ At V_{M}, 1) $\mathbf{V}_{\text {OUT }}=V_{\text {IN }}=V_{M}$ 2) Both devices are in saturation 3) $\mathbf{I}_{\text {OUt-SAT-D }}=I_{\text {OUt-SAT-U }}$ $\begin{gathered} I_{\text {OUT-SAT-D }}=k_{D}\left(V_{I N}-V_{T D)}\right) V_{O U T-S A T-D} \\ =I_{\text {OUT-SAT-U }}=k_{U}\left(V_{D 又}-V_{I N}-V_{T U}\right) V_{\text {OUT-SAT-U }} \\ \text { Substitute } \mathbf{V}_{\mathbf{M}} \\ \text { Solve for } \mathbf{V}_{\mathbf{M}} \end{gathered}$ Example Result: When $\mathrm{k}_{\mathrm{D}}=\mathrm{k}_{\mathrm{P}}, \mathrm{V}_{\text {out.sat-d }}=\mathrm{V}_{\text {outsat-U }}$ and $V_{T D}=V_{T V}$, then $V_{M}=V_{D D} / 2$	

EECS 42 Intro. electronics for CS Spring 2003 \quad Lecture 18: 04/0703 A.R. Neureuther

Output Propagation Delay High to Low (Cont.)

When $\mathrm{V}_{\text {OUt }}>\mathrm{V}_{\text {OUt-Sat-d }}$ the available current is $\mathrm{I}_{\text {OUt-Sat-d }}$
For this circuit when $V_{\text {OUT }}>V_{\text {OUt-Sat-d }}$ the available current is constant at $\mathrm{I}_{\text {OUT-SAT-D }}$ and the capacitor discharges.
The propagation delay is thus

$$
\Delta t=\frac{C_{\text {OUT }} \Delta V}{I_{\text {OUT-SAT-D }}}=\frac{C_{\text {OUT }} V_{D D}}{2 I_{\text {OUT-SAT-D }}}=\frac{50 \mathrm{fF} \cdot 2.5 \mathrm{~V}}{100 \mu \mathrm{~A}}=1.25 \mathrm{~ns}
$$

```
EECS 42 Intro. electronics for CS Spring 2003 Lecture 18:04/0703 A.R. Neureuther
                                    ersion Date 04/05/03
```


Switched Equivalent Resistance Model

The above model assumes the device is an ideal constant current source.

1) This is not true below $V_{\text {out-sat-d }}$ and leads to in accuracies.
2) Combining ideal current sources in networks with series and parallel connections is problematic.
Instead define an equivalent resistance for the device by setting $0.69 R_{D} C$ equal to the Δt found above

This gives

$$
\Delta t=\frac{C_{\text {OUT }} V_{D D}}{2 I_{\text {OUT-SAT-D }}}=0.69 R_{D} C_{\text {OUT }} \quad-1 \rightarrow \underbrace{\infty}_{\mathbf{x}}
$$

$$
R_{D}=\frac{V_{D D}}{2 \cdot(0.69) I_{O U T-S A T-D}} \approx \frac{3}{4} \frac{V_{D D}}{I_{O U T-S A T-D}}=\frac{3}{4} \frac{5 V}{100 \mu \mathrm{~A}}=37.5 \mathrm{k} \Omega
$$

Each device can now be replaced by this equivalent resistor

EECS 42 Intro. electronics for CS Spring 2003 Lecture 18: 04/0703 A.R. Neureuther Version Date 04/05/03

$\Delta \mathrm{t}=0.69 \mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{OUT}}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}$
Discharge (pull-up)
$\Delta t=0.69 R_{\mathrm{U}} \mathrm{C}_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}$

\(\left.\begin{array}{|c}EECS 42 Intro. electronics for CS Spring 2003 Lecture 18: 04/0703 A.R. Neureuther

Version Date 04/05/03\end{array}\right\}\)| SWitched Equivalent Resistance Values |
| :--- |
| The resistor values depend on the properties of silicon, |
| geometrical layout, design style and technology node. |
| n-type silicon has a carrier mobility that is 2 to 3 times |
| higher than p-type. |
| The resistance is inversely proportion to the gate |
| width/length in the geometrical layout. |
| Design styles may restrict all NMOS and PMOS to be of a |
| predetermined fixed size. |
| The current per unit width of the gate increases nearly |
| inversely with the linewidth. |
| For convenience in EE 42 we assume $R_{D}=R_{U}=10 \mathrm{k} \Omega$ |

