EECS 42 Introduction to Electronics for Computer Science

 Andrew R. NeureutherLecture \# 21 Clock Operation of Latches
Handout of Monday Lecture.
A) $\mathbf{2}^{\text {nd }}$ Midterm Returned
B) Latch circuit to hold/release signals
C) Cascade CMOS elements with latches
http://inst.EECS.Berkeley.EDU/~ee42/

Game Plan 04/21/03

Last Week: Logic Delay; resistor model, CMOS operation and delay

Monday 4/14/03:
$\square 2^{\text {nd }}$ Midterm returned
\square CMOS Latch and use in logic cascade
Wednesday 04/09/03:
\square Clocked Latch and Timing Diagram
\square Latency and Throughput
\square Feedback in logic to produce memory

Next (13th) Week: Diodes and MOS Devices

Problem set \#10 for 4/303: Logic Delay; Cascade; Latches and Clock frequency

Copyright 2001, Regents of University of California

CMOS Logic Gate: Example Inputs

$$
\begin{aligned}
& \mathbf{A}=\mathbf{0} \\
& \mathrm{B}=\mathbf{1} \\
& \mathrm{C}=\mathbf{1}
\end{aligned}
$$

PMOS A conducts; B and C Open

Output is High
$=0$

Logic Gate Propagation Delay: Initial State

Logic Gate: Worst Case Scenarios

What combination of previous and present logic inputs will make the Pull-Up the fastest?

Fastest
What combination of previous and overall? present logic inputs will make the
Pull-Up the slowest? Slowest overall?

Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

- Combinatorial logic gates can give incorrect answers prematurely and may take several gate propagation delays produce an answer.
- Clocks (signals as to when to proceed) and latches (which capture and hold the correct outputs) can provide synchronization.

Latch Controlled by a Clock

An inverter with clocked devices in series can form a latch.

When the clock ϕ is high its complement $\bar{\phi}$ is low and the inverter operates.

To synchronize the data the clock remains low until the data is correct at all locations on the chip. When the clock goes high the inverse of the data is passed.

Clock Signal Definitions

Frequency $=1 / \mathbf{P}=1 /\left(\tau_{\text {HIGH }}+\tau_{\text {LOW }}\right)$
Duty Cycle $=\left(\tau_{\text {HIGH }}\right) /\left(\tau_{\text {HIGH }}+\tau_{\text {LOw }}\right)$

Latch Work Best In Pairs

A Double Latch is an Edge-Triggered D Type

Flip-Flop

During the low part of the clock cycle this circuit records the input value and when the clock goes high drives $\mathrm{V}_{\text {OUT } 2}$ to the voltage level that arrived. (This is the classic function of a D flip-flop.)

Note that this circuit is not fooled by noise on the input and makes its decision on the rising edge of the clock (edge-triggered).

