

Review of Basic Circuit Concepts

Sheila Ross

Circuit Analysis
Transients
Logic
Timing Diagrams
Dependent Sources and Op-Amps
Load Line and $\mathbf{V}_{\text {out }}$ vs $\mathbf{V}_{\text {IN }}$
Diodes
MOS Operation

Example: Switch rises at $t=0$, falls at t $=0.1,1$ or $10 \mu \mathrm{sec}$ (Do $1 \mu \mathrm{sec}$ case)

Solution: for $R C=1 \mu \mathrm{sec}$: during the first rise V obeys:

$$
V=5\left[1-e^{\frac{-\mathrm{t}}{10^{-6}}}\right]
$$

Thus at $\mathrm{t}=1 \mu \mathrm{sec}$, rising voltage reaches

$$
5\left[1-\mathrm{e}^{-1}\right]=3.16 \mathrm{~V}
$$

Now starting at $1 \mu \mathrm{sec}$ we are discharging the capacitor so the form is a falling exponential with initial value 3.16 V :

What is equation?

EXAMPLE WITH BOTH SPECIAL CASES

Lecture 8

How to Combine Gate to Produce a Desired Logic Function?

 (More basic Logical Synthesis)Example:

A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$
\mathrm{F}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}
$$

Logical Synthesis

Guided by DeMorgan's Theorem

DeMorgan's Theorem :

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=\overline{[\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}]} \quad \text { or } \quad \overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}=\overline{[\mathrm{A} \mathrm{~B} \mathrm{C}]}
$$

Example of Using DeMorgan's Theorem:

Logical Synthesis of XOR

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

$$
\mathrm{F}=\mathrm{A} \bullet \overline{\mathrm{~B}}+\overline{\mathrm{A}} \bullet \mathrm{~B}
$$

We Need a Timing Diagram!
Delay 1
Delay 2

Copyright 2001, Regents of University of California

Timing Diagram for Delays in Logic

The 4 Basic Linear Dependent Sources

Lecture 13

EXAMPLE CIRCUIT: INCREASED OUTPUT RESISTANCE

Add resistor $\mathbf{R}_{\mathbf{E}}$

$$
v=0
$$

The input has been assumed to be shorted

Analysis: apply $\boldsymbol{i}_{\text {TEST }}$ and evaluate $\boldsymbol{v}_{\text {TEST }}$

Unknowns: $\boldsymbol{i}_{\text {TEST }}$,
$v_{\text {TEST }}, v_{\text {IN }}, v_{\mathrm{E}}$
$v_{\text {IN }}=-v_{\mathrm{E}}$ and is not zero!
KCL at v_{E}
KVL at $v_{\text {out }}$

Intuitive Explanation: $\mathbf{G m V}_{\text {IN }}$ burps current which has to also go through $\mathrm{R}_{\mathbf{0}}$. This raises
$v_{\text {TEST }}$ and the output impedance $v_{\text {TEST }} / i_{\text {TEST }}$

Finish this in the homework

How do you get started on finding $\mathbf{V}_{\mathbf{o}}$?
Hint: Identify Stages
Hint: $\mathrm{I}_{\text {IN }}$ does not affect $\mathbf{V}_{\text {O1 }}$

See the further examples of op-amp circuits in the reader

Voltage Transfer Function for the 42PD Logic Circuit w/wo Load

Lecture 15

Feedback Can Provide Memory

Lecture 19

The equation $\mathrm{I}=\mathrm{I}_{0} \exp \left({ }^{\mathrm{q} V} / \mathrm{kT}{ }^{-1}\right)$ is graphed below for $\mathrm{I}_{0}=10^{-15} \mathrm{~A}$

The characteristic is described as a "rectifier" - that is, a device that permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:

EECS 42 Intro. electronics for CS Spring 2003
Lecture 26: 5/7/03 A.R. Neureuther
Physics of Current Flow, Resistance, Resistivity
4/30/03

Lecture 22

$\mathrm{E}=\mathrm{V} / \mathrm{L}$.
$I=V / R$
$R=\rho L / A=(1 / q \mu N) L / W t=(L / W) / \mu(q N t)$
But $\mathbf{q} \mathbf{N} \mathbf{t}$ has the dimensions of charge per unit area and represents the charge per unit area in a film of thickness \mathbf{t} when the film has \mathbf{N} carriers $/ \mathrm{cm}^{3}$ and is \mathbf{t} units thick. Thus we call $\mathbf{q} \mathbf{N} \mathbf{t}$ the " \mathbf{Q} " and
$\mathbf{R}=(\mathrm{L} / \mathrm{W}) / \mu \mathbf{Q}=\mathrm{L} / \mathbf{W} \mathbf{R}$
Where \mathbf{R} is the resistance of a "square" of the film. Clearly if L is four times W, then $R=4 \mathbf{R}$.

Relation of Current to Physical Parameters

$$
\begin{gathered}
I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{n}\left(V_{G S}-V_{T}\right) \cdot V_{O U T-S A T-n} \\
\text { Mobility of carriers } \\
\text { Oxide thickness } \\
\text { Geometrical Layout }
\end{gathered}
$$

$$
\begin{gathered}
\mu_{n}=500\left(\mathrm{~cm}^{2} / V s\right) \quad \mu_{p}=150\left(\mathrm{~cm}^{2} / V \mathrm{~V}\right) \\
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)(3.9)}{6 \times 10^{-7} \mathrm{~cm}}=5.75 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2} \\
V_{\text {OUT-SAT-n }}=E_{\text {Crit }} \cdot L=10^{4}(\mathrm{~V} / \mathrm{cm}) \cdot 0.25 \times 10^{-4} \mathrm{~cm}=0.25 \mathrm{~V}
\end{gathered}
$$

