

Logical Synthesis Guided by DeMorgan's Theorem DeMorgan's Theorem : $\mathrm{A}+\mathrm{B}+\mathrm{C}=\overline{[\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}]} \quad \text { or } \quad \overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}=\overline{[\mathrm{A} \mathrm{~B} \mathrm{C}]}$ Example of Using DeMorgan's Theorem: Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring $2003 \quad$ Lecture 26: 5/7/03 A.R. Neureuther	
The equation $\mathrm{I}=\mathrm{I}_{0} \exp \left({ }^{\mathrm{qV}} / \mathrm{kT}{ }^{-1)} \quad\right.$ Simple "Perfect Rectifier" Model is graphed below for $\mathrm{I}_{0}=10^{-15} \mathrm{~A}$	
	If we can ignore the small forwardbias voltage drop of a diode, a simple effective model is the "perfect rectifier," whose I-V characteristic is given below:
The characteristic is described as a "rectifier" - that is, a device that	Reverse bias Forward bias $\mathrm{I} \cong 0$ any $\mathrm{V}<0$ $\quad \mathrm{~V} \cong 0$, any $\mathrm{I}>0$
permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:	
Copyright 2001, Regents of University of California	

> EECS 42 Intro. electronics for CS Spring 2003 Lecture 26: 5/7/03 A.R. Neureuther Version Date 4/30/03

Relation of Current to Physical Parameters

$I_{D}=\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{n}\left(V_{G S}-V_{T}\right) \cdot V_{O U T-S A T-n}$
Mobility of carriers
Oxide thickness
Geometrical Layout
Voltage of scattering velocity limit

$$
\begin{gathered}
\mu_{n}=500\left(\mathrm{~cm}^{2} / V s\right) \quad \mu_{p}=150\left(\mathrm{~cm}^{2} / V \mathrm{~S}\right) \\
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)(3.9)}{6 \times 10^{-7} \mathrm{~cm}}=5.75 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2} \\
V_{\text {OUT-SAT-n }}=E_{\text {Crit }} \cdot L=10^{4}(\mathrm{~V} / \mathrm{cm}) \cdot 0.25 \times 10^{-4} \mathrm{~cm}=0.25 \mathrm{~V}
\end{gathered}
$$

