EECS 42 Introduction to Electronics for

 Computer Science Andrew R. Neureuther
Lecture \# 27 Review For Final

Coverage and Emphasis Handout.
A) Diodes with circuits and MOS Resistance
B) Static NMOS and CMOS
C) CMOS resistor model and Delay
D) Worst Case Delay, Timing, Latches
E) Op-Amps and Dependent Sources http://inst.EECS.Berkeley.EDU/~ee42/

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003
Lecture 27: 5/12/03 A.R. Neureuther PULSE: Output is Rising exponentǐarfsion Date 5/10/03 Lecture 7 then Falling exponential

Example: Switch rises at $t=0$, falls at t $=0.1,1$ or $10 \mu \mathrm{sec}$ (Do $1 \mu \mathrm{sec}$ case)

Now starting at $1 \mu \mathrm{sec}$ we are discharging the capacitor so the form is a falling exponential with initial value 3.16 V :

What is equation?
Solution: for $\mathrm{RC}=1 \mu \mathrm{sec}$:
during the first rise V obeys:

$$
V=5\left[1-e^{\frac{-t}{10^{-6}}}\right]
$$

Thus at $t=1 \mu \mathrm{sec}$, rising voltage reaches

$$
5\left[1-\mathrm{e}^{-1}\right]=3.16 \mathrm{~V}
$$

Copyright 2001, Regents of University of California

EXAMPLE WITH BOTH SPECIAL CASES

Copyright 2001, Regents of University of California

CASCADE OP-AMP CIRCUITS

How do you get started on finding V_{o} ?
Hint: Identify Stages
Hint: $I_{\text {IN }}$ does not affect $V_{\text {O1 }}$

See the further examples of op-amp circuits in the reader
Copyright 2001, Regents of University of California

EXAMPLE CIRCUIT: INCREASED INPUT RESISTANCE

Lecture 20
Add resistor $\mathbf{R}_{\mathbf{E}}$

Analysis: apply $\boldsymbol{i}_{\text {TEST }}$ and evaluate $\boldsymbol{v}_{\text {TEST }}$

$$
v_{I N}=R_{I N} i_{T E S T} \quad v_{T E S T}=R_{I N} i_{T E S T}+v_{E} \quad \text { Similar to }
$$ the homework

KCL

$$
\frac{v_{E}}{R_{E}}+\frac{v_{E}}{R_{0}}-i_{T E S T}-G_{m} R_{I N} i_{T E S T}=0
$$

Check for special $\quad \frac{v_{T E S T}}{i_{T E S}}=R_{I N}+\left(1+G_{m} R_{I N}\right) R_{E} \quad \mathbf{R}_{\mathrm{E}}$ puts \mathbf{R}_{IN} on a node case for R_{0} infinite $i_{\text {TEST }}$ whose voltage increases in response
Copyright 2001, Regents of University of California to current in R_{IN}.

EECS 42 Intro. electronics for CS Spring 2003
Lecture 27: 5/12/03 A.R. Neureuther
Lecture 12
TIMING DIAGRAMS
Version Date 5/10/03

Show transitions of variables vs time

Copyright 2001, Regents of University of California

Lecture 23 DIODE I-V CHARACTERISTICS AND MODESELS Bate 5/10/03

The equation $\mathrm{I}=\mathrm{I}_{0} \exp \left({ }^{\mathrm{qV}} / \mathrm{kT}{ }^{-1}\right)$ is graphed below for $\mathrm{I}_{0}=10^{-15} \mathrm{~A}$

The characteristic is described as a "rectifier" - that is, a device that permits current to pass in only one direction. (The hydraulic analog is a "check value".) Hence the symbol:

Simple "Perfect Rectifier" Model

If we can ignore the small forwardbias voltage drop of a diode, a simple effective model is the "perfect rectifier," whose I-V characteristic is given below:

Copyright 2001, Regents of University of California

EECS 42 Intro. electronics for CS Spring 2003
Lecture 27: 5/12/03 A.R. Neureuther
Physics of Current Flow, Resistance, Resistivity

But $\mathbf{q} \mathbf{N t}$ has the dimensions of charge per unit area and represents the charge per unit area in a film of thickness \mathbf{t} when the film has \mathbf{N} carriers $/ \mathrm{cm}^{3}$ and is \mathbf{t} units thick. Thus we call $q \mathbf{N} \mathbf{t}$ the " \mathbf{Q} " and
$\mathbf{R}=(\mathbf{L} / \mathbf{W}) / \mu \mathbf{Q}=\mathbf{L} / \mathbf{W} \mathbf{R}$
Where \mathbf{R} is the resistance of a "square" of the film. Clearly if L is four times W, then $R=4 R$.

Saturation Current NMOS Model

Current $I_{\text {OUT }}$ only flows when $V_{\text {IN }}$ is larger than the threshold value $V_{T D}$ and the current is proportional to $V_{\text {OUT }}$ up to $\mathbf{V}_{\text {out-sat-d }}$ where it reaches the saturation current

$$
I_{O U T-S A T-D}=k_{D}\left(V_{I N}-V_{T D}\right) V_{O U T-S A T-D}
$$

Note that we have added an extra parameter to distinguish between threshold (V_{TD}) and saturation ($\mathrm{V}_{\text {OUT-SAT-D }}$).
Example:
$\mathbf{k}_{\mathrm{D}}=25 \mu \mathrm{~A} / \mathrm{V}^{2} \quad$ Use these
$\mathbf{V}_{\text {TD }}=1 \mathrm{~V} \quad$ values in the
$\mathrm{V}_{\text {OUt-SAT-D }}=\mathbf{1 V}$ homework.
$I_{\text {OUT-SAT-PD }}=25 \frac{\mu A}{V^{2}}(3 V-1 V) 1 V=50 \mu A$

Copyright 2001, Regents of University of California

Composite Current Plot for the 42PD Circuit with $200 \mathrm{k} \Omega$ Load to Ground

Lecture 16

fornia

EECS 42 Intro. electronics for CS Spring 2003
Lecture 27: 5/12/03 A.R. Neureuther
Version Date 5/10/03

Lecture 17 Transistor Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.

Composite $\mathrm{I}_{\text {OUT }}$ vs. V $_{\text {OUT }}$ for CMOS

Lecture 17

PU current is flat (saturated) below

Copyright 2001, Regents of University of California

Voltage Transfer Function for the Complementary Logic Circuit

$3 / 4 \mathrm{~V}_{\mathrm{DD}}$ is the average value of $\mathbf{V}_{\text {OUT }}$
Approximate the NMOS device curve by a straight line from (0,0) to ($I_{\text {OUt-SAT-D }}, 3 / 4 \mathrm{~V}_{\text {DD }}$).

Interpret the straight line as a resistor with

$$
\text { slope }=1 / \mathbf{R}=3 / 4 \mathbf{V}_{\mathrm{DD}} / \mathbf{I}_{\mathrm{SAT}}
$$

Inverter Propagation Delay

Discharge (pull-down)

$$
\Delta t=0.69 \mathrm{R}_{\mathrm{D}} \mathrm{C}_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

Discharge (pull-up)

$$
\Delta t=0.69 R_{U} C_{\text {OUT }}=0.69(10 \mathrm{k} \Omega)(50 \mathrm{fF})=345 \mathrm{ps}
$$

EECS 42 Intro. electronics for CS Spring 2003
Lecture 27: 5/12/03 A.R. Neureuther
Lecture 19
Version Date 5/10/03
Logic Gate Propagation Delay: Initial State

Lecture 20

Logic Gate Cascade

To avoid large resistance due to many gates in series, logic functions with 4 or more inputs are usually made from cascading two or more 2-4 input blocks.

EECS 42 Intro. electronics for CS Spring 2003
Lecture 27: 5/12/03 A.R. Neureuther
Version Date 5/10/03

Lecture 21 Latch Work Best In Pairs

The first stage operates while the clock is low and inverts and amplifies the arriving signal and charges or discharges $\mathrm{C}_{\mathrm{L} 1}$.

The second stage operates while the clock is high and inverts the signal on $\mathrm{C}_{\mathrm{L} 1}$ to charge or discharge $\mathrm{C}_{\mathrm{L} 2}$ and downstream logic gate inputs.

Copyright 2001, Regents of University of California

Lecture 22 Latch Operation: Pipelined

Latch 0
Gate 1 Latch 1
Gate 1
Latch 2

EECS 42 Intro. electronics for CS Spring 2003 Lecture 27: 5/12/03 A.R. Neureuther
Version Date 5/10/03

Lecture 22 Latch Timing Diagram
$\mathrm{A} 1=0$
$\begin{array}{ll}B 2=1 & B 1 \\ C 2=0 & 1=>0\end{array}$

Copyright 2001, Regents of University of California

Latency and Throughput

Latency L is the delay between the rising edge of the clock on L0 and the data being valid internally in the last latch.

$$
\begin{aligned}
& \mathbf{L}_{\text {LUMPED }}=\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\mathrm{GATE} 1}+\tau_{\mathrm{GATE} 2}+\tau_{\mathrm{L}_{-} \mathrm{INT}} \\
& =2 \tau_{\text {INV }}+2 \tau_{\text {INV }}+2 \tau_{\text {INV }}+2 \tau_{\text {INV }}=8 \tau_{\text {INV }} \\
& \mathbf{L}_{\text {PIPLINED }}=\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\text {GATE } 1}+\tau_{\mathrm{L}_{-} \mathrm{INT}}+\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\mathrm{GATE} 2}+\tau_{\mathrm{L}_{-} \mathrm{INT}} \\
& =2 \tau_{\text {INV }}+2 \tau_{\text {INV }}=12 \tau_{\text {INV }}
\end{aligned}
$$

Throughput \mathbf{T} is the bits per second through the latches and is the maximum clock frequency.

$$
\begin{aligned}
& \mathbf{P}_{\text {LUMPED }}=\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\tau_{\mathrm{GATE} 1}+\tau_{\text {GATE } 2}+\tau_{\mathrm{L}_{-} \mathrm{INT}} \\
& =2 \tau_{\text {INV }}+2 \tau_{\text {INV }}+2 \tau_{\text {INV }}+2 \tau_{\text {INV }}=8 \tau_{\text {INV }} \\
& F_{\text {LUMPED }}=1 / 8(345 \mathrm{ps})=0.36 \mathrm{GHz} \\
& \mathbf{P}_{\text {PIPELINED }}=\tau_{\mathrm{L}_{-} \mathrm{EXT}}+\operatorname{MAX}\left(\tau_{\text {GATE } 1}, \tau_{\text {GATE } 2}\right)+\tau_{\mathrm{L}_{-} \mathrm{INT}} \\
& =2 \tau_{\text {INV }}+2 \tau_{\text {INV }}+2 \tau_{\text {INV }}=6 \tau_{\text {INV }} \quad F_{\text {PIPLINED }}=1 / 6(345 \mathrm{ps})=0.48 \mathrm{GHz}
\end{aligned}
$$

- The resistive load of NMOS results in D.C. current and hence static power consumption given by the product of current times voltage.
- CMOS avoids this static loss as the pull-up device shuts off the current completely.
- CMOS still suffers a.c. power consumption that is proportional to the switching frequency.
- The energy expended per cycle of in charging and discharging can never be less than CV^{2}

