
EECS 40/43 Debugging Circuits

Experiment: Debugging Circuits

I. Objective
To learn techniques for debugging circuits in a systematic manner.

II. Overview
When a complicated circuit is first built, is not uncommon for the circuit to be non-functional, due to
wiring/connection errors, faulty parts, and/or incorrect equipment settings (e.g. wrong power-supply
settings). The process of finding and correcting these problems is called debugging.
It is very easy to get overwhelmed by the circuit complexity and to get lost in the myriad of possible
sources of error. However, it is not difficult to debug a circuit if you approach the problem systematically.
Like a doctor examining a patient, an electrical engineer should find the cure for a malfunctioning circuit
by observing, measuring, posing and testing various hypotheses, until the error(s) is (are) identified and
corrected. We’ve already learned how to use two of the basic electronic measurement tools – the digital
multimeter (Experiment #1) and the oscilloscope (Experiment #2); these will be our tools for debugging
electrical circuits.
Firstly, we should make sure that our measurement tools are working properly, so that we can correctly
interpret the measurements. We can be misled in our debugging efforts if we think that we are measuring
something, when in fact we are measuring something else. This can happen, for example, if someone has
set the oscilloscope to plot AC signals when you want to measure a DC signal using the oscilloscope.

FIRST RULE: Make sure the debugging tools are themselves working correctly. For example, test
the voltmeter (DC voltage function on a digital multimeter) on a battery. Test the scope using the
provided test signal.

In order to debug a circuit, you must understand how it is supposed to work. It is not an easy task to
understand a very complex circuit. Simple circuits such as resistors in parallel, resistors in series, an RC
circuit, etc. are easy to understand, however. Engineers typically design complicated circuits by using
simple circuits as “building blocks.” It is important to understand the function of each piece, or “sub-
circuit,” in order to understand how the circuit works as a whole. You should know how each of the
various electronic components (e.g. resistor, capacitor, op-amp, transistor) is supposed to behave, i.e. the
current-versus-voltage (I-V) characteristics of each component. Some basic questions to ask are:
 How many terminals does the component have?
 What is the voltage (or current) of a certain terminal when we apply a certain voltage (or current)

at another one of its terminals?
 How does this change with varying voltages and currents (AC signals)?
 Note: The electrical properties of a component may change with various factors such as

temperature, pressure, and magnetic fields.

SECOND RULE: Study the circuit diagram until you have at least a general idea of the functions of
the various parts of the circuit. Know enough about the components to be able to devise tests to
determine whether or not each part is functioning properly.

 1

EECS 40/43 Debugging Circuits

III. Approach to Debugging
Suppose you are given a malfunctioning circuit, and that you need to determine what is wrong with it and
correct the problem(s). Even if you don’t understand completely how the circuit works, there is a good
chance that you can still debug it by checking for basic errors. (You probably have experienced making
the common mistake of forgetting to plug the power cord into the electrical outlet!) We should always be
aware that very simple errors are also very common errors.
Matching the diagram of the circuit on paper to the actual constructed circuit is part of the debugging
process. Most circuits have points of fixed DC voltages (VCC, ground, V+, etc.), so that we know what
the voltages at these nodes should be — we should measure and confirm their values. If any other node
has a predictable theoretical voltage, then we should confirm that, too.

Debugging Steps:

1. Check the actual wiring against the schematic. One method is to simply verify what is connected
to each node.

2. Check the plug-pin circuit boards. They are notorious for bad connections.
3. Check the power bussing: Are all of the DC voltages correctly distributed?
4. If all of the fixed DC values are correct, check the operation of the actual components. (For

example, measure the DC and AC voltage values at the input and output nodes of an op-amp to
determine if it is working properly.)

5. If a component is suspected to be faulty, first verify that it is really hooked up correctly, then
check to see if it is functional.

6. If the circuit can be divided into stages or modules, check each one of them separately. Verify that
each stage or module of the circuit is functional. (Isolate the bug and eliminate it!)

To isolate an error, consider the circuit as having inputs (e.g. power-supply voltages, or an AC signal
coming from a signal generator) and outputs. We should also be able to identify sub-circuits with inputs
and outputs. We can then measure the input(s) and see if the output corresponds to what we expect, for
each sub-circuit. If it does not, then something is wrong with that particular sub-circuit, and we can go
down one more level to see which component(s) is (are) causing the trouble. This methodical approach to
debugging a circuit may be too time-consuming in practice for very complicated circuits. As engineers,
we should try to balance the knowledge we have of the properties of the circuit with this methodical
approach.

Sometimes, you may pinpoint a possible source of the problem, but may not have the time to test out your
hypothesis directly on the circuit. In this case, you should devise a quick and easy experiment to test your
hypothesis. For example: You think a transistor is burnt out, but are not absolutely sure. You can
remove it from the circuit and stick it into a curve tracer (an oscilloscope-like instrument – you can ask
your TA to show one to you in the lab) to see whether it’s working or not.

Engineering is the art of solving problems. If you wonder why it is an art, consider the debugging
process: We want to find and correct an error, and we have algorithms and methods to help us do this.
However, there is no fixed way of using these techniques – we have to figure that out, keeping in mind
that we want to do this in the shortest amount of time. This requires skill and experience, but as in art, it
also requires creativity.

 2

EECS 40/43 Debugging Circuits

How are circuits debug
There is the “doing it b
will help you with the
Nothing beats common
programs or machines -

Debugging advice from
 Always make sure

short wires for shor
 Always connect you
 Make sure you know
 First analyze the cir

and currents at var
node up), testing vo

 Test your compone
 Follow the data pa

debugging tool for
since some of the in

ged in industry?

y hand” method, but in reality, engineers have fancy programs or machines that

 design of circuits. Debugging prototype circuits is always a hands-on process.
 sense, and common sense can sometimes be a lot easier than learning to use fancy
- and it comes in handy during technical job interviews.

 past EECS students:
you wire your circuits neatly. This will make your debugging a lot easier! (i.e.
t distance connection)
r power supply (Vcc and Gnd) to the red and blue rails of the breadboard.
 what your circuit is supposed to do.

cuit by hand to make sure you know what you’re looking for (in terms of voltages
ious points in the circuit). Then work from the power supply down (or ground-
ltages to see if what you expect is what you’re getting.
nts.
th – from input to output – where does the error occur? (This is more of a
digital circuits. Feedback, e.g. used in op-amp circuits, can complicate debugging
puts depend on the output.)

s

Vcc Rail
Gnd Rail
Figure 1. Exa
Short Wire

mple of a wired chip

3

EECS 40/43 Debugging Circuits

IV. Hands-On

1. Building a XOR Logic Gate Using NANDs
As mentioned earlier, you should always know what your circuit is supposed to do. To illustrate this
point, first construct a XOR logic gate using the MM74HC00 chip, as shown below (Fig 2a). A and B
are the inputs to the logic gates, thus you need to connect them to either Vcc (1) or Gnd (0). Then,
measure the voltage for nodes C to F using the digital oscilloscope probe and record the result onto
the truth table in your lab report. Compare your measured result to the truth table you derived in your
prelab. In this exercise, use Vcc = 5V.

A

E

D

C

F

B

 (a)

(c) (b)

Figure 2. The XOR Logic Gate (a) construction of a XOR gate using 4
NANDs (b) top view of the circuit (c) schematic of a XOR logic gate

When you are done, ask your TA to verify your working circuit.

 4

EECS 40/43 Debugging Circuits

2. Debugging Logic Circuit
By this time, your TA will kindly construct the following circuit for you (Fig 3). However, your TA
will “carelessly” make some mistakes in your circuit and you need to figure out what is the bug.

INPUTS OUTPUT
A B G F H
0 0 0 0 1
0 0 1 0 1
0 1 0 1 1
0 1 1 1 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 0 1

1st stage

2nd stage

Figure 3. A Logic Circuit Table 1. The Truth Table

By connecting the inputs (A, B, and G) to Vcc or Gnd and measure the output (H), write down your
measured truth table. You should notice that your result is different form the desired truth table above
(Table 1).

A useful way to debug a complex circuit is to break it into simpler and independent stages. In this
case, we can break our circuit into 2 stages (see Fig 3).

First, let us concentrate on the first stage – the XOR. The inputs for this stage are A and B, and the
output is F. By varying the inputs to Vcc or Gnd, measure the voltage at nodes C, D, E, and F.
Record your result onto the truth table in your lab report and compare it with the one in the previous
section. How are they different? Can you identify which logic gate in the XOR module is not
behaving correctly? Check with your TA to verify your solution. If your TA agrees with your
solution, you can correct the bug in your XOR stage.

Now, temporarily disconnect the wire that links the two modules in your circuit – so that we treat the
second stage independently.

The second stage consists of a NAND gate with two inputs (F & G), and one output (H). Connect the
inputs to Vcc or Gnd, and measure the voltage on the output node H. Then, record your result onto
the truth table in your lab report and compare it with Table 1. Can you figure out what is wrong with
the second stage? Check your solution with your TA.

Now re-connect the wire that links the two stages and record the final truth table.

 5
09/29/02 Mike Huang, Manu Seth, and Brendan Morris

	I. Objective
	II. Overview
	III. Approach to Debugging
	IV. Hands-On

