Department of EECS

University of California, Berkeley

Logic gates – Lab Report

Bart Muthuswamy and W. G. Oldham

September 1st 2001

- 1. Construct your LED logic probe. What color LED do you have (red is best)? Describe how is the LED a simple visual indicator of a NOT gate?
- 2. What R do you use in your LED logic probe and how much current is flowing through the LED? What is its brightness at 2V and 5V? WARNING: THE INPUT LOGIC VOLTAGE CANNOT EXCEED V_{CC} !!!
- 3. Draw the circuit schematic of how you construct a NOT gate using the MM74HC00 chip. What is the high-to-low and low-to-high delay for Vcc = 5V and Vcc = 2V?

4. Draw the circuit schematic of how you construct a chain of 4 inverters using the MM74HC00 chip. What is the high-to-low and low-to-high delay for each inverter?

Vcc = 5V	1 gate	2 gates	3 gates	4 gates
High-to-low				
Low-to-high				
Avg gate delay				

5. Now using the digital probes, what is the high-to-low and low-to-high delay for each inverter for Vcc = 5V and Vcc = 2V?

Vcc = 5V	1 gate	2 gates	3 gates	4 gates
High-to-low				
Low-to-high				
Avg gate delay				

Vcc = 2V	1 gate	2 gates	3 gates	4 gates
High-to-low				
Low-to-high				
Avg gate delay				

6. Based on the gate delay difference between 1 and 3 gates (two gate delays) what is the average gate delay at each of the supply voltages. (Note: we do not want to use the difference between 2 and 4 delays because the last gate is not loaded by the input to any other logic circuit). Average Gate Delay = _____ at 5V; Average Gate Delay = _____ at 2V.

9/22/02 Mike Huang