
EECS151/251 Homework 10 Solution

Problem 1: Hidden Caches

The L1-miss penalty is NOT included in addition to any L2 latencies for the L1+L2 configuration. Also there
are two accepted answers because this wasn’t taught in class but the more correct answer has an asterisk. This is
because on average, your access time must always be greater than your hit time - even when you have a very small
miss time.

(1) (a) **L1 only AMAT: 1 + 0.1 · 5 = 1.5ns

(b) L1 only AMAT: 0.9 · 1 + 0.1 · 5 = 1.4ns

(2) (a) **L1 + L2 AMAT: 1 + 0.1 · (3 + 0.05 · 10) = 1.35ns

(b) L1 + L2 AMAT: 0.9 · 1 + 0.1 · (0.95 · 3 + 0.05 · 10) = 1.235ns

(3) Can assume that both caches are clocked on the positive edge, so the valid and tag bits are not available until
1 tcq from the edge. After the clk-edge, the direct-mapped cache will have a critical path equal to:

tcq tag sram8x32 + teq27bits + tand

while the 2-way-set associative cache will have a critical path of:

tcq tag sram4x32 + teq28bits + tand + tmux

So the direct-mapped cache might have a slightly longer sram tcq but it has less circuitry afterwards, which
makes it faster on a hit than a 2-way set-associative cache.

Ultimately, direct mapped caches should have a faster hit time.

1

EECS151/251 Homework 10 Solution

Problem 2: Yea, I’ve got time

(1) The 3-level H-tree is shown below. In order to minimize skew in any sort of clock tree distribution, it’s
important to take the clock to the center and then branch out from there.

(2) This solution assumes a simple RC wire model. Also, this was listed on Piazza but was not in the original
hw pdf. The gate cap can be assumed as 2pF, the clk driver’s output resistance can be written as Rclk the
Wire cap units are really aF/mm . I should also note that due to the numerous errors in the homework
problem, Question 2.2,2.3,2.4 are no longer graded. This is a possible solution based off the previously stated
assumptions just in case anyone is curious. A question like this WILL NOT be on the final.

• delay 1: Rclk(1.25 · 0.02pF/mm) + (1.25mm · 0.1Ω/mm)(2pF + ·1.25 · 0.02pF/mm)

• delay 2: Rclk(1.25 · 0.02pF/mm) + (1.26mm · 0.1Ω/mm)(2pF + ·1.26 · 0.02pF/mm)

The skew is the difference in delay from the first to second flop.

(3) Assuming the resistance and gate-cap of a unit inverter is Ri = 1Ω and Ci=2pF. Note that Ci and Cload and
are the same, so Ci will represent the flop input cap. The propagation delay in terms of the total stages, N ,
where the wire length is l, the wire resistance is Rw=0.1Ω/mm, and the wire cap is Cw=0.02pF/mm (assumin
a pi model for the wire), is shown below:

tpd = N [Ri (Ci + Cwl/N + Ci) +Rwl/N (Cwl/2N + Ci)]

Differentiating and solving for N yields

N = l/2

(
RwCw

RiCi

)
= 1.25/2

(
0.1 · 0.02

1 · 2

)
= 0.02

So, the optimal number of stages, N, is 0 (because the wire parasitics are very good). The skew is the same,
since there are zero buffers.

(4) reusing the same equation from above, but plugging in N = 3, we solve for both flops. Note, i’m cheating
here and changing the inverter input cap to 0.4pF to be able to reuse the simple approximations above:

tpd1.25 = 3 [Ri (Ci + Cw1.25/3 + 4 ∗ Ci) +Rw/3 (Cw1.25/6 + 4 ∗ Ci)]

tpd1.26 = 3 [Ri (Ci + Cw1.26/3 + 4 ∗ Ci) +Rw/3 (Cw1.26/6 + 4 ∗ Ci)]

Plugging in the rest of the numbers results in:

tpd1.25 = 12.225ps

tpd1.26 = 12.225ps

So the skew is reduced to less than 1fs, but its much slower than zero buffers.

2

EECS151/251 Homework 10 Solution

Problem 3: Decoders

(1) Assuming NMOS/PMOS have equal drive strength the logical efforts of all three gates are:

• Cin : 5
2

• C1 : 1

• C2 : 3
2

All stages have a branching effort of 1 and the total fanout, F is 100. There are 3 stages (N = 3) and CW =
0. Thus we can can derive C1 and C2 with the method of logical effort outlined below.

FGB = 100 ∗ 5

2
∗ 1 ∗ 3

2
= 375

h = FGB1/N = 3751/3 = 7.211

C2 =
3

2
∗ 100Cin

h
= 20.8Cin

C1 =
20.8Cin

h
= 2.884CCin

(2) Assuming tinv is the delay of a zero-fanout inverter. The units of td is number of zero-fanout inverter delays.

td = tinv [d1 + d2 + d3]

= tinv

[
(4 +

5

2

C1

Cin
) + (1 +

C2 + CW

C1
) + (2 +

3

2

CL

C2
)

]
Remember that d = p + hf, where p is the parasitic delay of the gate, h is the logical effort, and f is the
fan-out. As an example, for d1, the parasitic delay is 4, h = 5

2 , and f = C1

Cin
. Remember that the parasitic

delay, p, is defined by
Cout−gate

Cout−inverter
.

(3) This can’t be solved using the typical logical effort, since the wire load, CW , is not a fixed multiple of C2! So
we will take the partial derivative of the delay equation with respect to C1 and again to C2 and then solve
the resulting system of linear equations.

∂tinv
∂C1

=
5

2

1

Cin
− C2 + CW

C2
1

(1)

∂tinv
∂C2

=
1

C1
− 3

2

CL

C2
2

(2)

After solving with wolfram alpha and plugging in 1fF (1e-15 F) you should get:

C1 = 5.21fF (3)

C2 = 27.9fF (4)

(4) SO we will fix C2 = 20.8Cin and use it in addition to CW to set the ’load’ of C1.

H = FGB (5)

H =
20.8Cin + CW

Cin

5

2
(6)

H = 152 (7)

h = 12.33 (8)

(9)

We can use this to calculate the size of C1 now!

C1 =
20.8 + 40

12.33
Cin (10)

C1 = 4.93Cin (11)

I just realized that each line got an equation number ... that was a mistake, and I’m not going to bother
removing them now so we’ll have to deal with it together. even if it does look silly.

3

EECS151/251 Homework 10 Solution

(5) The first method (part 3) provides a more optimized version of the logic chain but requires significantly more
calculation and slightly more area. Part 4’s heuristic is significantly easier to calculate, provides a slightly less
optimum version because now the stages have different effective stage efforts, but does use slightly less area.

4

EECS151/251 Homework 10 Solution

Problem 4: I Think I remember

(1) The write-footer is shown below. We should not drive the bitlines from din[x] directly, which is why the
extra 2 NMOSs are used.

(2) The mask being ”active low” means that when the mask bit = 0, you want to mask the cell from being
written.

Problem 5: I Think I Remember Something Else

(1) You have to refresh each bit at least once every 64ms.

(2) Each row will needs to be refreshed at least once every 64ms. This means at least every 8µs, there will be a
refresh, which will require a read and a write-back, making the DRAM unavailable. This is equivalent to over
128,000 refreshes per second.

5

