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Overview

In lecture, you have learned how to use Verilog to describe hardware at the register-transfer-level
(RTL). It might be helpful to take some time to review the Verilog Primer Slides before doing this
lab.

In this lab, you will learn about arguably most important part of the VLSI flow: simulation. The
goal of this lab is to introduce the Verilog simulation environment, as well as demonstrate how
useful and critical simulation will be as we move forward with the VLSI design flow, because it
is one of the most intuitive ways for you to verify your design at all stages of the flow. While
going through the lab, keep in mind that understanding how the simulation environment works will
lead to confidence in designs after running through the CAD tools, and significantly less hassle in
debugging problems when they occur.

This lab uses tools that may not be installed on all servers, so we recommend that you login to one of
the class servers which are physically located in Cory 125, which are named c125m-1.eecs.berkeley.edu

through c125m-19.eecs.berkeley.edu. You can access them remotely through SSH (see the last
section of the Lab 1 handout). You may also use eda-{1-8}.eecs.berkeley.edu.

To begin this lab, get the project files by typing the following command:

git clone /home/ff/eecs151/labs/lab2

cd lab2

The ASIC Design Flow

Before going any further, let’s take a look at the basic ASIC design flow, otherwise known as the
digital VLSI flow. Here is a diagram of the flow in its most basic form, in an ideal world where
everything works the first time around:

http://inst.eecs.berkeley.edu/~eecs151/fa19/files/verilog/Verilog_Primer_Slides.pdf
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Figure 1: The ASIC flow in an ideal world (source: Wikipedia)

At first, it seems like a very straightforward process from a system specification to a chip, right?
However, the big piece that is missing from this diagram is simulation, or more broadly, verification.
System specifications and architectural designs need to be verified by simulating their behavioral
models against the expected system behavior. Functional and logical implementations of the system
must also need to be simulated for functional correctness. Only after there is high confidence can
we even begin to move onto the circuit (logic synthesis: Lab 3) and physical design (floorplanning,
placement, and routing: Labs 4 and 5), within and after which we must continue to simulate
the design to ensure that they will meet system specifications. After the layout of the circuit
is complete, the circuit must also be verified to meet physical rules imposed by the underlying
transistor technology (Lab 6). Only when these processes are all complete can a chip be fabricated,
packaged, and tested post-silicon.

Any issues found during any verification process has implications on the design. More severe issues
require the design to be changed earlier in the design flow, causing delays in the design process.
Hence, there is essentially a feedback loop from the output of each block in Fig. 1 to any block
before it–a number of loops far too great to show in Fig. 1. The fewer loops you take in the design
flow, the less time you waste. Therefore, it is imperative that you are well-versed in the mechanics
and importance of simulating your designs before even getting around to designing anything!
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RTL-level simulation: FIR filter

For this lab, we will be using Verilog code that implements a very simple FIR (Finite Impulse
Response) filter. A schematic of the filter is shown below.

D Q D Q D QD Q D Q D Q

*1

Input

Output

*1 *4 *16 *4

Figure 2: FIR Filter

There is an input signal and a clock input, and 5 delayed versions on the input are kept, multiplied
by different coefficients and then summed together. The expression for this particular filter is:

y[n] = 1 ∗ x[n] + 4 ∗ x[n− 1] + 16 ∗ x[n− 2] + 4 ∗ x[n− 3] + 1 ∗ x[n− 4] (1)

The input in our example is a 4 bit signed 2’s compliment number, and the output is a larger
bitwidth signed number to ensure that there is no overflow. The purpose of this class and this lab
in particular is not to focus on filter design, but on implementation of digital circuits from Verilog
code. As such, Verilog code for this FIR filter is provided in the src folder.

Simulation Environment

For simulating Verilog in this lab course, we will be using a tool from Synopsys called VCS. VCS
works by compiling Verilog modules into a binary file, and then executes that binary file to produce
the desired outputs. However, we will not be interfacing with VCS directly; it is only one of many
Verilog simulators, including established ones such as Cadence’s Incisive (formerly NCSim) all the
way to open-source ones such as Verilator. The framework, mechanisms, and capabilities are quite
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similar between simulators. Therefore, this lab aims to teach you more about what goes into
simulating RTL rather than learning exactly how to use VCS.

To this end, we will utilize an ASIC design framework developed here at Berkeley called HAMMER.
HAMMER abstracts away tool- (Cadence, Synopsys, Mentor, etc.) and technology- (TSMC, Intel,
etc.) specific considerations away from ASIC design. This philosophy aims to maximize reusability
of design intent between projects that may have differently underlying tool infrastructures and
target different process technologies. Documentation about HAMMER philosophy and usage is at
hammer-vlsi.readthedocs.io.

For this lab, we will be ”implementing” our designs using the ASAP7 7nm Predictive Process Design
Kit. To target this fake technology with HAMMER, we have set up a bare-bones HAMMER flow
that you will see is largely shared between this lab and subsequent ones. You will execute steps
within this flow by using a common Makefile. This flow is distilled from an ASAP7 Tutorial
contained in Chipyard, an open-source RISC-V SoC Design Framework also developed here at
Berkeley.

HAMMER consumes serialized configuration in YAML or JSON format, which is considered an
intermediate representation (IR) language between higher-level physical design generators and the
underlying scripts that the ASIC design flow tools require. In this lab repository, you will see
a set of YAML files (inst-env.yaml, asap7.yml, design.yml, and a few sim-<type>.yml) that
contain HAMMER IR for our design implementation. Of these files, you will only interact with
the sim-<type>.yml files to configure your simulation flow in this lab. The sources for this lab are
contained in the src folder, and some special non-Verilog files will be explained later.

The HAMMER Python core is installed at /home/ff/eecs151/hammer, along with plugins for
Cadence (Genus Synthesis, Innovus Place-and-Route, Voltus Power), Synopsys (VCS Simulator),
and Mentor Graphics (Calibre DRC/LVS) tools. Note: The ASAP7 PDK and the HAMMER
plugins are provided to us solely for educational use. They should NEVER be copied
outside of instructional machines under any circumstances, or else we risk losing access
in the future!!!

To get started, examine the Makefile of this lab. Skimming through, you can see that there are
rules for the basic VSLI flow steps explored in these labs: simulation, power analysis, synthesis,
place-and-route (PAR), design rule checking (DRC), layout vs. schematic (LVS), and translational
steps between them. The top section of the Makefile defines variables that point to the YAML and
JSON files needed by HAMMER.

First, examine the sim-rtl.yml file:

# RTL Simulation Variables

sim.inputs:

input_files:

- "src/fir.v"

- "src/addertree.v"

- "src/fir_tb.v"

timescale: "1ns/10ps"

options:

- "-notice"

hammer-vlsi.readthedocs.io
https://chipyard.readthedocs.io/en/dev/VLSI/Tutorial.html
yaml.org
json.org
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- "-line"

- "+lint=all,noVCDE"

- "+v2k"

- "-debug"

- "-sverilog"

top_module: "fir_tb"

tb_name: "fir_tb"

defines:

- "CLOCK_PERIOD=1.00"

This is a snippet of HAMMER IR in the sim namespace. These keys are consumed by HAMMER
for simulation. Notice that the simulator needs some specifications, such as the files that contain
our Verilog source code and our testbench name, some timescale on which to simulate and a clock
period, and some options. These will be explained below.

Exploring the other YAML files in this lab will give you an idea of what else is needed to define
environment, tool, and technology constraints.

Under the Hood

Now, let’s decipher what happens under the hood when we run a simulation with HAMMER. Take
this opportunity to download the VCS user guides from the eecs151 class-account home direc-
tory for cross-referencing: /home/ff/eecs151/labs/manuals/vcsmx_ug.pdf, /home/ff/eecs151/
labs/manuals/ucli_ug.pdf, and /home/ff/eecs151/labs/manuals/dve_ug.pdf.

To get started, let’s set up our environment. You will need to do this for every terminal in
which you use HAMMER on the instructional machines:

source /home/ff/eecs151/tutorials/eecs151.bashrc

export HAMMER_HOME=/home/ff/eecs151/hammer

source $HAMMER_HOME/sourceme.sh

Now, let’s run a basic RTL simulation and look at the terminal output:

make sim-rtl

Here is a summary of what you should see when you scroll through the terminal output after it
finishes, from top to bottom:

1. The first line is the command that the Makefile constructed for you.

2. This is followed by HAMMER debug output, such as the technology and CAD tool used.

3. The first time you run sim-rtl, Hammer will extract the PDK, compile memories (unused
in this lab), and make an auto-build file. You will not see this again unless you clean your
working directory.

/home/ff/eecs151/labs/manuals/vcsmx_ug.pdf
/home/ff/eecs151/labs/manuals/ucli_ug.pdf
/home/ff/eecs151/labs/manuals/ucli_ug.pdf
/home/ff/eecs151/labs/manuals/dve_ug.pdf
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4. When it is time to simulate, HAMMER issues a subprocess call to the vcs executable. No-
tice that the arguments passed to VCS are the same as the list of sim options from our
sim-rtl.yml file. One important setting here is the timescale option, which sets the
timescale for the Verilog testbench. We will discuss what this actually means later on in
the lab.

5. VCS compiles your Verilog code. If your code has errors, they will be shown during this step.

6. This is followed by a wall of “Lint” messages. Linting catches Verilog mistakes that aren’t
actual syntax errors, but cause common bugs. We intentionally used the +lint=all option
to trigger these messages. In this case, assigning a number like “1” instead of 16’d1 gives
Verilog less information about how you want the bits interpreted, which could cause a design
bug that is hard to track down.

7. The compilation finishes and generates a binary executable. If you look at the sim-rtl phony
(target is not a file) rule in the Makefile, the --obj dir flag to the HAMMER executable is
the target working directory. sim is the action, so our simulation environment and results
are in the build/sim-rundir folder. In that folder, you will see the binary executable: the
simv file.

8. This binary file is then executed with a TCL script argument build/sim-rundir/run.tcl,
with the options -ucli -do run.tcl. This is enabled by the option -P access.tab.

9. At the end, the simulation should report the observed values with the expected and actual
values at each timestep, and they should match. You can even automate the checking of these
outputs in either the testbench itself or through parsing the output text directly, but that
will be explained in more detail later.

Viewing Waveforms

After completing the simulation, VCS dumps the waveforms to a file: build/sim-rundir/vcdplus.vpd.
This file contains simulation history data, and is generated in the Verilog testbench (src/fir tb.v)
with the $vcdpluson and $vcdplusoff system tasks. A system task in Verilog is a function that
is created by the compiler to make things easier for you, and usually begins with a $ character. We
will not dig deeper into system tasks in this lab, but they are very powerful tools that are worth
investing the time in learning.

Let us load up the waveforms in a graphical viewer DVE (Discovery Visualization Environment).
(Note: this will require X11 forwarding, so if you ssh from a terminal be sure to use either the
-X or -Y flag. If you are using PuTTy, make sure to enable X11 forwarding and have the proper
X server software installed. An example of an X server for Windows is a program called VcXsrv,
although there are a ton of other options). A faster, smoother, cross-platform alternative would be
to use X2Go (see Lab 1 for instructions).

cd build/sim-rundir

dve -vpd vcdplus.vpd &

When DVE pops up, you should see the window below:
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Figure 3: DVE Window

This window will contain the design hierarchy, the signals in that level, as well as a lot of other
buttons and options. One important feature is towards the top left of the window where it has
a textfield and next to that says “x10ps”. This represents the units of time that the signals are
plotted on. Change this to be in units of nanoseconds.

You can add waveforms to a new view by selecting a few of them (In, Out and clk) and the right
clicking and going to “Add To Waves” and then clicking either “New Wave View” or “Recent”.
Since there are no other wave views open these both accomplish the same thing. If you already had
a wave view open, then you can selectively add signals to one wave view or another. A screenshot
of adding these waveforms is shown below.
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Figure 4: Adding waveforms

After the window opens, you may need to adjust the zoom settings from “View — Zoom“ or the
corresponding buttons on the toolbar. The picture below displays the output of the FIR filter as
a step waveform. This can be achieved by setting the radix of the signal to be 2’s compliment
(right-click — Set Radix — Twos compliment) and then changing the Set Draw Style Scheme to
be Vector: Analog (right-click — Set Draw Style Scheme — Analog). You then need to change the
properties of the signal since the beginning of the waveform does not utilize the full scale. If you
right click and go to properties, you can set the Analog Waveform properties to be User, and set
the Min to be -32 and the max to be 32. Then you should see something similar to the waveform
below.

Figure 5: Displaying Waveforms
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For those of you who know a bit about FIR filters, this beginning section of the waveform is the
filter’s impulse response.

Testbenches

Testbenches are how you simulate a design. Specifically they setup the inputs and check the
outputs of the submodule that you are trying to test. If you look at the fir tb.v file in the src/

folder, there are a few important parts that you will need to understand in order to write your own
testbench. The first important piece is generating the clock waveform. This is accomplished by the
following lines of Verilog code:

reg clk;

initial clk = 0;

always #(`CLOCK_PERIOD/2) clk <= ~clk;

This creates a register named clk, which is initially 0 and toggles every CLOCK PERIOD divided
by 2 (in order to generate a rising edge every CLOCK PERIOD). This clock period is defined in the
sim.inputs.defines key in the sim-rtl.yml file you saw above. After we have a clock waveform,
the next step is to setup the inputs. There is an initial begin block that is the body of the testbench
that does this work. Let us look at a piece of it:

initial begin

$vcdpluson;

In <= 4'd0;
@(negedge clk) In<= 4'd1;
@(negedge clk) In<= 4'd0;
.

.

.

@(negedge clk) In<= 4'd13;
@(negedge clk) In<= 4'd14;
@(negedge clk) In<= 4'd15;
$vcdplusoff;

$finish;

end

The $vcdpluson and $vcdplusoff are system tasks that setup the vpd file generation that we
used to look at the waveforms in the previous section. The other lines setup the register In to
take on different values after the negative edge of the clock. In this block, the lines are executed
after each other, so the next @(negedge clk) call waits until the next negative edge of the clock
before executing the code that follows it. This allows us to set up a series of values for the inputs
sequentially in time. The reason that we are operating on the negative edge of the clock is that the
registers that are sampling the inputs operate on the positive edge, so we want to make sure that
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the correct value is sampled when that edge occurs. If we were to change the inputs on the same
edge, we could cause a hold time violation later when delay gets annotated.

The above code sets up the values sequentially, but you can do this in a much cleaner way by
reading values from a file. Take a look at the file src/fir tb file.v, parts of which are copied
below:

initial begin

$vcdpluson;

repeat (26) @(negedge clk);

$vcdplusoff;

$finish;

end

initial begin

$readmemb("../../src/data_b.txt", Out_correct_array);

$readmemb("../../src/input.txt", input_array);

end

assign Out_correct = Out_correct_array[index_counter];

assign In = input_array[index_counter];

always @(negedge clk) begin

$display($time, ": Out should be %d, got %d", Out_correct, Out);

index_counter <= index_counter + 1;

end

This testbench file uses text files to pull both the inputs and expected outputs, as well as displays
what the output is and what it thinks the correct output should be.

This is done using the $readmemb command, which reads a file into a verilog memory that you
instantiate in the testbench. By then using a counter to loop through both the input and the
desired output, the testbench simply needs to run for the right number of cycles, which is shown
using the repeat syntax inside the first initial begin block. Finally, this testbench uses $display,
which is verilog’s print statement to print out information about the waveforms to the console so
that you do not need to look at the waveforms. More sophisticated testbenches can be created
this way so that you do not have to look at the waveforms to gather the necessary information,
allowing you to automate your testing procedures. While this is a small enough design that you
could in theory debug using only the waveforms, the project later in this course will be much
more complicated so learning how to build automated testbenches will be very important. You can
run this automated testbench yourself by replacing fir tb in sim-rtl.yml with fir tb file, and
running make sim-rtl again.
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Question 1: Conceptually translating between waveforms, Verilog, and schematics

When asked to write Verilog, include the module definition. There are multiple correct solutions, we
will accept any solution that works.

a) Using the provided Verilog code and input waveforms, submit the equivalent logic gate schematic
and draw/ sketch the output waveforms. Note that the initial conditions of X and Z are given.

module dut (

input A, B, clk,

output reg X, Z

);

always @(posedge clk) begin

X <= B;

Z <= (Z & X) | A;

end

endmodule

clk

A

B

X

Z

b) Using the schematic below and input waveforms, submit the equivalent Verilog code and a sketch
of output waveforms

Y
B[1]

A[0]
B[0]

A[1] A[1]

A[0]

B[1]

B[0]

Y

c) Using the input and output waveforms provided below, submit the equivalent schematic and
Verilog code. Hint: Use 1 flip-flop and 1 logic gate only. A is an input, X and Y are outputs.

clk

A

X

Y

Question 2: Writing a testbench

a) Using the Verilog code in Question 1a, generate a testbench that emulates the input waveforms,
including initial conditions, then simulate the block using VCS and compare to your previous
answer. Submit your Verilog testbench and a screenshot of the simulation waveforms showing all
of the input and output pins. Hint: you may need to modify the Verilog code from Question 1a.
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Gate-level simulation: Incorporating delay estimates into the FIR
filter

The RTL design of the FIR filter, fir.v, conceptually describes hardware, but cannot be physically
implemented as-is because it is purely behavioral. In the real world, a CAD tool translates RTL
into logic gates from a particular technology library in a process called synthesis. In Lab 3, you
will learn how to create this file yourself, but for now we have provided the synthesized gate-level
netlist at src/post-syn/fir.mapped.v.

To simulate using the gate-level netlist, you simply need to make a few changes to the input
constraints to HAMMER. Take a look at sim-gl-syn.yml. You will notice that a few things have
been added, including a level:"gl" option, and timing annotated:true option, two JSON files,
and a Standard Delay Format (SDF) file. HAMMER consumes the two JSON files in order to
generate a Unified Command-Line Interface (UCLI) script that tells VCS to force the synthesized
flip-flops into a valid initial state before starting the simulation. This is required because Verilog
simulators cannot simulate with unknown of ’x’ valued inputs. Theoretically, a real design should
work regardless of initial conditions, but we will not do in this lab due to time constraints. The
SDF file is an output from the synthesis tool that annotates delays that are introduced by the way
it performed the logic synthesis.

Under the hood, HAMMER has already included the Verilog models of the standard cells from the
ASAP7 PDK. You will learn more about these standard cells in the next lab, but just know that
they are required because the gate-level has instances of the technology’s standard cells everywhere,
and VCS must also know the Verilog definition of those cells. The extra options in the new VCS
section of the Makefile are simply to deal with these standard cell models.

Now, return back to the lab2 root directory, run the gate-level simulation, and reload the waveforms
after it is finished. Notice that in this invocation we are overriding the SIM RTL CONF Makefile
variable from the command line (later labs will use a different make rule):

make sim-rtl SIM_RTL_CONF=sim-gl-syn.yml

To understand what we will see in the waveforms, open src/post-syn/fir.mapped.sdf, and go
to line 259.

(CELL

(CELLTYPE "INVx1_ASAP7_75t_SL")

(INSTANCE add0.g833)

(DELAY

(ABSOLUTE

(PORT A (::0.0))

(IOPATH A Y (::11) (::7))

)

)

)
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The above text describes the delay for a cell of type INVx1 ASAP7 75t SL for the instance add0/g833.
The format of the delay is minimum:typical:maximum, which refer to different operating regions
that will be discussed in more detail in future labs. Note that this SDF file only specifies maximum
delays, which is generally what we want because we need to simulate the worst-case conditions
(more on that in future labs). For this specific instance that means that there will be a delay of
either 11ps or 7ps, depending on whether the data is transitioning from low to high or from high
to low. We know that these delays are in picoseconds because of the declaration on line 12 of the
SDF file.

Remember that previously we mentioned the timescale option. This is passed to VCS as a
-timescale flag with the value 1ns/10ps, which means that a delay of 1 would correspond to an
actual delay of 1ns, with a resolution of 10ps.

To tell the simulator about these delays, we must use the
+sdfverbose -sdf max:fir:<path/to/fir.mapped.sdf> VCS options (auto-generated by HAM-
MER). Other VCS flags that HAMMER auto-generates for gate-level simulation are +neg tchk

and -negdelay. In regular RTL-level simulation, all the aforementioned flags are replaced by
+notimingcheck and +delay mode zero instead.

Now, examine the waveforms in DVE. Notice that the waveforms look similar to, but not exactly
the same as the results from simulating the RTL-level simulation of the design. Let’s see why. By
default, the logic gates behave ideally. Depending the operating conditions of the chip—voltage,
process variation, temperature—the delay through a gate will be known. CAD tools do this cal-
culation for you, and annotate the delay onto the gates using an SDF file like the one you just
saw.

Configure the waveforms so that you see at least the clk and delay chain0 signals (hint: you may
need to go down to the dut level of hierarchy in the left pane). Zoom into the first rising edge of
delay chain0, which should be around the 1.5ns mark. Recall that an RTL-level sim, logic gates
behave ideally. This means that the flip-flop output delay chain0 would change state (given an
input that has changed) perfectly synchronously to the rising edge of clk. However, you will see
here that the transition edge of delay chain0 is some amount of time after the rising edge of clk.
This delay was annotated in the SDF as the flop’s clk-q time (IOPATH CLK Q, for rising and falling
edges) and properly simulated in VCS.

Try looking at some other signals and think about why some signals have more delay than others.
Also try out some of the other options in the wave viewer to try and figure out what is going on.
If you get stuck on anything that you are trying to do, you can look up the Synopsys DVE User
Guide, which has a significant amount of information about DVE, in the eecs151 home directory:
/home/ff/eecs151/labs/manuals/dve_ug.pdf.

Question 3: Calculating delays from the DVE window

Calculate the delay of the first flip-flop in the chain (delay chain0) relative to the input pin clk at
1.5ns. What is the delay, and how were you able to get it from the viewer? Can you correlate this
with a particular line in the SDF file?

Now that we are simulating with delay, we can see that to preserve logic functionality, we must not
toggle the clk into the circuit too quickly. When this happens, there is a ’setup’ violation and the

/home/ff/eecs151/labs/manuals/dve_ug.pdf
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FIR filter will not function correctly.

Question 4: Creating and fixing setup time violations

Edit the "CLOCK PERIOD=1.00" in sim-gl-syn.yml to make the clock period 0.5ns and simulate
again. Does it still work? Why or why not? Run it again at increasingly larger clock periods (but
less than the initial 1.0ns) and report the clock period you found where it successfully meets timing.

Hint: correct functionality means that the expected and actual outputs match. Look at how the
testbench checks for functionality.
Note: in the waveform window, you can do File — Reload Databases to show the new waveforms
after each simulation run.

Re-run the design with the clock period set to 1.0ns again. Save the vpd file as a different name,
such as vcdplus orig.vpd. After you have renamed the previous vpd file, change the SDF file
in sim-gl-syn.yml to point to fir.mapped hold.sdf rather than fir.mapped.sdf. Then, re-run
the gate-level simulation.

This will run the simulation with a different delay file, which intentionally has an error in it. You
should now have two different vpd files, and you can load them in the DVE waveform viewer to see
the differences. Add all of the delay chain signals for both vpd files. Zoom into the clock edges
near 1.7ns into the simulation. There should be a significant difference between the two vpd files,
and one of them will have a signal that is incorrectly getting captured on the wrong cycle. This is
an exaggerated case of a hold time violation, which occurs when a specific delay path is too small
relative to another.

Question 5: Fixing hold times

Setup times can be fixed by increasing the clock period, but hold times cannot, because the capturing
edge relationship in the hold violation do not change with clock period. Later, you will learn how the
CAD tools do this for you, but in this problem you will manually identify the error in the SDF and
fix it.

a) Explain the differences between the waveforms in the two vpd files. What signal(s) are different
and why? Show what in the SDF is causing this, and make a best guess at what could cause this
to happen.

b) Modify the src/post-syn/fir.mapped hold.sdf file to fix the hold time without reverting what
you found in a). You are only allowed to change a delay value in one register. Submit the following:

i) Which delay you changed (show the original and fixed value)

ii) Why did you change that register’s delay?

iii) Simulation waveforms showing correct output and the text printout of the simulation showing
that the results are correct.

iv) Since you can’t actually hack SDFs to fix hold, give your best guess at what would be
inserted/removed from a gate-level implementation of this design that would accomplish your
hold fix.



EECS 151/251A ASIC Lab 2: Simulation 15

Power Analysis

Low power is arguably the most important specification in chip design these days, as mobile ap-
plications continue driving the demand for SoCs and custom digital hardware. Therefore, a robust
analysis of power consumption for a given testbench (or workload, benchmark) is another item that
designers must simulate. Power analysis results can inform and change everything from architec-
tural design and on in the ASIC flow.

Normally, the most accurate power analysis results come from simulating on a post-place-and-
routed design (Labs 4 and 5). For now, we have provided the place-and-routed (P&R) outputs and
post-P&R simulation outputs in src/post-par-sim.

To perform power analysis with HAMMER, we must specify a few more things. Take a look at
sim-gl-par.yml. In addition to the things added in sim-gl-syn.yml, there is a new namespace
power which contains keys that specify Switching Activity Interchange Format (SAIF) files, Stan-
dard Parasitic Exchange Format (SPEF) files, and a layout database. The layout database and
SPEF files are generated from the P&R tool (saved for future labs). Skimming through the SPEF
files, you can glance the words CAP and RES everywhere; these are annotations of the parasitic
capacitances and resistances caused by physical layout and connections of logic gates. The SAIF file
is dumped from a post-P&R gate-level simulation, and contains a somewhat cryptic annotation of
how often nets in the design switch and requires the sim.inputs.saif keys in HAMMER. A time
window over which switching activity is measured is helpful for generating representative traces,
such as for workloads that only run after a processor core has booted up.

Now, run the power analysis (later labs will use a different make rule):

make power

Under the hood, HAMMER uses Cadence Voltus to analyze power consumption. It maps the
annotated switching activity onto the layout database, taking into account the circuit parasitics.
Voltus dumps reports in the build/power-rundir directory. There are results for static and active
power analysis. The static power analysis (in staticPowerReports folder) by default assumes an
average switching activity factor of 0.2 (nets switch 20% of the time), while the active power analysis
(in activePower.post-par-sim.ucli.saif folder) uses the information from the SAIF. Depending
on the testbench, there could be a large difference between the static and active estimates.

Open build/power-rundir/activePower.post-par-sim.ucli.saif/PVT 0P77V 0C.hold view.rpt

and scroll to the bottom of the file. The total power is grouped into 3 types: internal, switching,
and leakage power.

• Internal power: power dissipated inside logic gates. Usually caused by momentary short-
circuiting as transistors are switching.

• Switching power: power dissipated charging and discharging load and parasitic capacitances/re-
sistances.

• Leakage power: power dissipated in logic gates when they are not switching. Logic gates have
finite resistance between power and ground even when they’re totally static!
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Below that first table is a breakdown into types of cells. In our FIR, we have a couple of sequential
cells (delay chain flip-flops) but many more combinational cells (adder tree), hence it is reasonable
that our power is dominated by combinational logic.

Question 6: Creating and fixing setup time violations

a) Also open up build/power-rundir/activePower.post-par-sim.ucli.saif/

PVT 0P63V 100C.setup view.rpt. What is the most obvious difference in the power numbers
compared to the hold view file? What do you think is the dominant factor contributing to this
difference?

b) Compare the reports with SAIF annotation you just viewed against the analogous reports in
build/power-rundir/staticPowerReports. What would you estimate is the effective switching
activity factor of the testbench we have been using?

Closing Thoughts

Proficiency in simulation and understanding what considerations go into verifying your design at
every stage of the ASIC flow is indispensable. In this lab, we have only skimmed the surface of the
methods by which designers validate, verify, and debug their designs. RTL simulation in VCS is
simply a form of functional validation; basically, you assure yourself that you build the right thing.
However, there is an entire field of verification, where advanced algorithmic techniques and higher
levels of abstraction can fully exercise any design and ensure that vanishingly few bugs make it to
silicon. In essence, you assure yourself that you built the thing right. Correspondingly, there are
many CAD tools that accelerate these tasks and are heavily used in industry. We encourage you
to take EE219C if you are interested in this topic.

Within the ASIC design flow itself, there are additional things that need to be simulated. The
most obvious thing to simulate is power consumption, which you have seen here. Findings from
these simulations directly inform design decisions at all levels of the stack. Digging even deeper,
CMOS transistor physics increasingly rears its ugly head. Even the wires that connect transistors
now don’t stay intact if signals are constantly traveling through them (called electromigration).
Wires are so small now, that even the way that power is distributed across a chip (IR drop) can
greatly affect circuit performance. Transistors themselves even have defects and wear out over time,
causing premature failures if left unaccounted for (reliability). There are tools that simulate all of
these effects. Take EE251B (formerly EE241B) if you interested in this topic.

Lastly, industry chips must also undergo simulations post-manufacturing to find out if there are
any manufacturing-induced defects and performance limitations. Designing for test (DFT), ex-
tra circuitry to correct errors and enable/disable functionality, and on-chip monitoring of circuit
parameters (e.g. temperature, timing) must also be simulated to maximize product yield.
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