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Overview

This lab consists of three parts. For the first part, you will be writing a GCD coprocessor that could
be included alongside a general-purpose CPU (like your final project). You will then learn how the
tools can create a floorplan, route power straps, place standard cells, perform timing optimizations,
and generate a clock tree for your design. Finally, you will get a slight head start on your project
by writing part of the ALU.

To begin this lab, get the project files and set up your environment by typing the following command
and sourcing the eecs151.bashrc file, as usual:

git clone /home/ff/eecs151/labs/lab4.git

You should also clean up the build directory generated from the previous labs to save some disk
space.

Writing Your Coprocessor

Take a look at the gcd coprocessor.v file in the src folder. You will see the following empty
Verilog module.

module gcd_coprocessor #( parameter W = 32 ) (

input clk,

input reset,

input operands_val,

input [W-1:0] operands_bits_A,

input [W-1:0] operands_bits_B,

output operands_rdy,

output result_val,

output [W-1:0] result_bits,

input result_rdy

);
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// You should be able to build this with only structural verilog!

// Define wires

// Instantiate gcd_datapath

// Instantiate gcd_control

// Instantiate request FIFO

// Instantiate response FIFO

endmodule

First notice the parameter W. W is the data width of your coprocessor; the input data and output
data will all be this bitwidth. Be sure to pass this parameter on to any submodules that may use
it! You should implement a coprocessor that can handle 4 outstanding requests at a time. For
now, you will use a FIFO (First-In, First-Out) block to store requests (operands) and responses
(results).

A FIFO is a sequential logic element which accepts (enqueues) valid data and outputs (dequeues)
it in the same order when the next block is ready to accept. This is useful for buffering between
the producer of data and its consumer. When the input data is valid (enq val) and the FIFO is
ready for data (enq rdy), the input data is enqueued into the FIFO. There are similar signals for
the output data. This interface is called a “decoupled” interface, and if implemented correctly it
makes modular design easy (although sometimes with performance penalties).

This FIFO is implemented with a 2-dimensional array of data called buffer. There are two
pointers: a read pointer rptr and a write pointer wptr. When data is enqueued, the write pointer
is incremented. When data is dequeued, the read pointer is incremented. Because the FIFO depth
is a power of 2, we can leverage the fact that addition rolls over and the FIFO will continue to
work. However, once the read and write pointers are the same, we don’t know if the FIFO is full or
empty. We fix this by writing to the full register when they are the same and we just enqueued,
and clearing the full register otherwise.

A partially written FIFO has been provided for you in fifo.v. Using the information above,
complete the FIFO implementation so that it behaves as expected.

Then, finish the coprocessor implementation in gcd coprocessor.v, so that the GCD unit and
FIFOs are connected like in the following diagram. Note the connection between the gcd datapath

and gcd control should be very similar to that in Lab 3’s gcd.v and that clock and reset are
omitted from the diagram. You will need to think about how to manage a ready/valid decoupled
interface with 2 FIFOs in parallel.
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A testbench has been provided for you (gcd coprocessor testbench.v). You can run the test-
bench to test your code by typing make sim-rtl in the root directory as before.

Question 1: Design

a) Submit your code (gcd coprocessor.v and fifo.v) and show that your code works (VCS output
is fine).
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Introducing Place and Route

In this lab, you will begin to implement your GCD coprocessor in physical layout–the next step
towards making it a real integrated circuit. Place & Route (P&R or PAR) itself is a much longer
process than synthesis, so for this lab we will look at the first few (and arguably most important)
steps: floorplanning, placement, power straps, and clock tree synthesis (CTS). The rest will be
introduced in the next lab.

Setting up for P&R

We will first bring our design to the point we stopped in Lab 3. Synthesize and post-synthesis
simulate your design:

make syn

make sim-gl-syn

Before proceeding, make sure your design is working correctly. It should meet timing at the default
1ns clock period in the setup corner with plenty of slack.

Floorplanning & Placement

Floorplanning is the process of allocating area to the design as well as putting constraints on how
this area is utilized. Floorplanning is often the most important factor for determining a physical
circuit’s performance, because intelligent floorplanning can assist the tool in minimizing the delays
in the design, especially if the total area is highly constrained.

Floorplan constraints can be “hard” or “soft”. “Hard” constraints generally involve pre-placement
of “macros”, which can be anything from memory elements (SRAM arrays, in an upcoming lab)
to analog black boxes (like PLLs or LDOs). “Soft” constraints are generally guided placements of
hierarchical modules in the design (e.g. the datapath, controller, and FIFOs in your coprocessor),
towards certain regions of the floorplan. Generally, the P&R tool does a good job of placing
hierarchical modules optimally, but sometimes, a little human assistance is necessary to eke out
the last bit of performance.

In this lab, we will just look at allocating a custom sized area to our design, specified in the
design.yml file. Open up this file and locate the following text block:

# Placement Constraints

vlsi.inputs.placement_constraints:

- path: "gcd_coprocessor"

type: "toplevel"

x: 0

y: 0

width: 150

height: 150

margins:

left: 10
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right: 10

top: 10

bottom: 10

- path: "gcd_coprocessor/GCDpath0"

type: "placement"

x: 50

y: 50

width: 50

height: 50

# Pin Placement Constraints

vlsi.inputs.pin_mode: generated

vlsi.inputs.pin.generate_mode: semi_auto

vlsi.inputs.pin.assignments: [

{pins: "*", layers: ["M5", "M7"], side: "bottom"}

]

The vlsi.inputs.placement constraints block specifies 2 floorplan constraints. The first one de-
notes the origin (x, y), size (width, height) and border margins of the top-level block gcd coprocessor.
The second one denotes a soft placement constraint on the GCD datapath to be roughly in the
center of the floorplan. For complicated designs, floorplans of major modules are often defined
separately, and then assembled together hierarchically.

Pin constraints are also shown here. All that we need to see is that all pins are located at the bottom
boundary of the design, on Metal 5 and Metal 7 layers. Pin placement becomes very important in
a hierarchical design, if modules need to abut each other.

Placement is the process of placing the synthesized design (structural connection of standard cells)
onto the specified floorplan. While there is placement of minor cells (such as bulk connection cells,
antenna-effect prevention cells, I/O buffers...) that take place separately and in between various
stages of design, “placement” usually refers to the initial placement of the standard cells.

After the cells are placed, they are not “locked”–they can be moved around by the tool during
subsequent optimization steps. However, initial placement tries its best to place the cells optimally,
obeying the floorplan constraints and using complex heuristics to minimize the parasitic delay
caused by the connecting wires between cells and timing skew between synchronous elements (e.g.
flip-flops, memories). Poor placement (as well as poor aspect ratio of the floorplan) can result in
congestion of wires later on in the design, which may prevent successful routing.

Power

In the middle of the asap7.yml file, you will see this block, which contains parameters to HAM-
MER’s power strap auto-calculation API:

# Power Straps

par.power_straps_mode: generate

par.generate_power_straps_method: by_tracks

par.blockage_spacing: 2.0



EECS 151/251A ASIC Lab 4: Floorplanning, Placement, Power and CTS 6

par.generate_power_straps_options:

by_tracks:

strap_layers:

- M3

- M4

- M5

- M6

- M7

- M8

- M9

track_width: 14

track_width_M3: 7

track_width_M5: 24

track_width_M8: 6

track_width_M9: 6

track_spacing: 0

power_utilization: 0.25

power_utilization_M8: 1.0

power_utilization_M9: 1.0

Power must be delivered to the cells from the topmost metal layers all the way down to the
transistors, in a fashion that minimizes the overall resistance of the power wires without eating up all
the resources that are needed for wiring the cells together. You will learn about power distribution
briefly at the end of this course’s lectures, but the preferred method is to place interconnected grids
of fat wires on every metal layer. There are tools to check the quality of the power distribution
network, which like the post-P&R simulations you did in Lab 2, calculate how the current being
drawn by the circuit is transiently distributed across the power grid.

You should not need to touch this block of yaml, because the parameters are tuned for meeting
design rules in this technology. However, the important parameter is power utilization, which
specifies that approximately 25% of the available routing space on each metal layer should be
reserved for power, with the exception of Metals 8 and 9, which should have 100% coverage.

Clock Tree Synthesis: Overview

Clock Tree Synthesis (CTS) is arguably the next most important step in P&R behind floorplanning.
Recall that up until this point, we have not talked about the clock that triggers all the sequential
logic in our design. This is because the clock signal is assumed to arrive at every sequential element
in our design at the same time. The synthesis tool makes this assumption and so does the initial
cell placement algorithm. In reality, the sequential elements have to be placed wherever makes the
most sense (e.g. to minimize delays between them). As a result, there is a different amount of
delay to every element from the top-level clock pin that must be “balanced” to maintain the timing
results from synthesis. We shall now explore the steps the P&R tool takes to solve this problem
and why it is called Clock Tree Synthesis.
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Pre-CTS Optimization

Pre-CTS optimization is the first round of Static Timing Analysis (STA) and optimization per-
formed on the design. It has a large freedom to move the cells around to optimize your design to
meet setup checks, and is performed after the initial cell placement. Hold errors are not checked
during pre-CTS optimization. Because we do not have a clock tree in place yet, we do not know
when the clocks will arrive to each sequential element, hence we don’t know if there are hold vio-
lations. The tool therefore assumes that every sequential element receives the clock ideally at the
same time, and tries to balance out the delays in data paths to ensure no setup violations occur.
In the end, it generates a timing report, very similar to the ones we saw in the last lab.

Clock Tree Clustering and Balancing

The meat of CTS is accomplished after initial optimization. The CTS algorithm first clusters
groups of sequential elements together, mostly based on where they are in the design relative to
the top-level clock pin and common clock gating logic. The numbers of elements in each cluster is
selected so that it does not present too large of a load to a driving cell. These clusters of sequential
elements are the “leaves” of the clock tree attached to branches.

Next, the CTS algorithm tries to ensure that the delay from the top-level clock pin to the leaves
are all the same. It accomplishes this by adding and sizing clock buffers between the top-level pin
and the leaves. There may be multiple stages of clock buffering, depending on how physically large
the design is. Each clock buffer that drives multiple loads is a branching point in the clock tree,
and strings of clock buffers in a row are essentially the “trunks”. Finally, the top-level clock pin is
considered the “root” of the clock tree.

The CTS algorithm may go through many iterations of clustering and balancing. It will try to
minimize the depth of the tree (called insertion delay, i.e. the delay from the root to the leaves)
while simultaneously minimizing the skew (difference in insertion delay) between each leaf in the
tree. The deeper the tree, the harder it is to meet both setup and hold timing (thought experiment
#1 : why is this?).

Post-CTS Optimization

Post-CTS optimization is then performed, where clock is now a real signal that is being distributed
unequally to different parts of the design. In this step, the tool fixes setup and hold time violations
simultaneously. Often times, fixing one error may introduce one or multiple errors (thought experi-
ment #2 : why is this?), so this process is iterative until it reaches convergence (which may or may
not meet your timing constraints!). Fixing these violations involve resizing, adding/deleting, and
even moving the logic and clock cells.

After this stage of optimization, the clock tree and clock routing are fixed. In the next lab, you
will finish the P&R flow, which finalizes the rest of the routing, but it is usually the case that if
your design is unable to meet timing after CTS, there’s no point continuing!
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Compiling the Design with HAMMER

Now that we went over the flow (at least at a high level), it is time to actually perform these steps.
Type the following commands to perform the above described operations:

make syn-to-par

make redo-par HAMMER_EXTRA_ARGS="--stop_after_step clock_tree"

The first command here translates the outputs of the synthesis tool to conform to the inputs
expected by the P&R tool. The second command is similar to the partial synthesis commands
we used in the last lab. It tells HAMMER to do the PAR flow until it finishes CTS, then stop.
Under the hood, for this lab, HAMMER uses Cadence Innovus as the back-end tool to perform
P&R. Wait until Innovus is done with the P&R steps until post-CTS optimization and exits. You
will see that HAMMER again gives you an error - similar to last lab when HAMMER expected a
synthesized output, this time HAMMER expects the full flow to be completed and gives an error
whenever it can’t find some collateral expected of P&R.

Once done, look into the build/par-rundir folder. Similar to how all the synthesis files were
placed under build/syn-rundir folder in the previous lab, this folder holds all the P&R files. Go
ahead and open par.tcl file in a text editor. HAMMER generated this file for Innovus to consume
in batch mode, and inside are Innovus Common UI commands as a TCL script.

While we will be looking through some of these commands in a bit, first take a look at timingReports.
Due to when HAMMER outputs timing reports, you should only see the pre-CTS timing reports.
gcd coprocessor preCTS all.tarpt.gz contains the report in a g-zipped archive. Rest of the files
also contain useful information regarding capacitances, length of wires etc. Unzip these using gzip

or navigate with Caja, the file browser, and double click the archive you want to peek into.

Going back a level, in par-rundir, the folder hammer cts debug has the post-CTS timing reports.
The two important archives are hammer cts all.tarpt.gz and hammer cts all hold.tarpt.gz.
These contain the setup and hold timing analyses results after post-CTS optimization. Look into
the hold report. You may actually see some violations! However, any violation should be small (<1
ps) and because we have a lot of margins during design (namely the design.yml file has “clock
uncertainty” set to 100 ps), these small violations are not of concern, but should still be investigated
in a real design.
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Visualizing the Results

From the build/par-rundir folder, execute the following in a terminal with graphics (X2Go highly
recommended for low latency):

./generated-scripts/open_chip

The Innovus GUI will pop up with your layout and your terminal is now the Innovus shell. After
the window opens, click anywhere inside the black window at the center of the GUI and press “F”
to zoom-to-fit. You should see your entire design, which should look roughly similar to this, once
you disable the V8, M8, V9, and M9 layers using the right panel by unchecking their respective
boxes under the “V” column:

Take a moment to familiarize yourself with the Innovus GUI. You should also toggle between the
floorplan, amoeba, and placement views using the buttons that look like this: and examine
how the actual placement of the GCD datapath in ameoba view doesn’t follow our soft placement
guidance in floorplan view. This is because our soft placement guidance clearly places the datapath
farther away from the pins and would result in a worse clock tree!

Now, let’s take a look at the clock tree a couple different ways. In the right panel, under the
“Net” category, hide from view all the types of nets except “Clock”. Your design should now look
approximately like this, which shows the clock tree routing:
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We can also see the clock tree in its “tree” form by going to the menu Clock → CCOpt Clock Tree
Debugger and pressing OK in the popup dialog. A window should pop up looking approximately
like this:
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The red dots are the “leaves”, the green triangles are the clock buffers, the blue dots are clock gates
(they are used to save power), and the green pin on top is the clock pin or the clock “root”. The
numbers on the left side denote the insertion delay in ps. So, in this view, the tree is upside down,
but you get the point.

Now, let’s visualize our critical path. Go to the menu Timing → Debug Timing and press OK in
the popup dialog. A window will pop up that looks approximately like this:

Examine the histogram. This shows the number of paths for every amount of slack (on the x-axis),
and you always want to see a green histogram! The shape of the histogram is a good indicator of
how good your design is and how hard the tool is working to meet your timing constraints (thought
experiment #3 : how so, and what would be the the ideal histogram shape?).

Now right-click on Path 1 in this window (the critical path), select Show Timing Analyzer and
Highlight Path, and select a color. A window will pop up, which is a graphical representation of
the timing reports you saw in the hammer cts debug folder. Poke around the tabs to see all the
different representations of this critical path. Back in the main Innovus window, the critical path
will be highlighted, showing the chain of cells along the path and the approximate routing it takes
to get there, which may look something like this:
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Question 2: Interpreting P&R Timing Reports

a) What is the critical path of your design pre- and post-CTS? Is it the same as the post-synthesis
critical path?

b) Look in the post-CTS text timing report (hammer cts debug/hammer cts.all.tarpt). Find a
path inside which the same cell is used more than once. Identify the delay of those instances of
that common cell. Can you explain why they are different?

c) What is the skew between the clock that arrives at the flip-flops at the beginning and end of the
post-CTS critical path? Does this skew help or hurt the timing margin calculation?

d) (UNGRADED thought experiment #1) Why is it harder to meet both setup and hold timing
constraints if the clock tree has large insertion delay?

e) (UNGRADED thought experiment #2) Why does fixing one setup or hold error introduce one or
multiple errors? Is it more likely to produce an error of the same, or different type, and why?

f) (UNGRADED thought experiment #3) P&R tools have a goal to minimize power while ensur-
ing that all paths have have >0ps of slack. What might a timing path histogram look like in
a design that has maximized the frequency it can run at while meeting this goal? Given the
histogram obtained here, does it look we can increase our performance? What might we need to
improve/change?

When you are done, you may exit Innovus by closing the GUI window.
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Under the Hood: Innovus

While HAMMER obfuscates a lot from the end-user in terms of tool-based commands, most IC
companies directly interface with Innovus and it is useful to know what tool-specific commands you
are running in case you need to debug your circuit step-by-step. Therefore, we will now look into
par.tcl and follow along using Innovus. Make sure you are in the directory build/par-rundir

and type:

innovus -common_ui

Now, follow par.tcl command-by-command, copying and pasting the commands to the Innovus
shell and looking at the GUI for any changes. You may skip the puts commands as they just
tell the tool to print out what its doing, and the write db commands which write a checkpoint
database between each step of the P&R flow. The steps that you will see significant changes are
listed below. As you progress through the steps, feel free to zoom in to investigate what is going
on with the design, look at the extra TCL files that are sourced, and cross-reference the commands
with the command reference manual at /home/ff/eecs151/labs/manuals/TCRcom.pdf.

1. After the command sourcing floorplan.tcl

2. After the command sourcing power straps.tcl

3. After the command edit pin

4. After the command place opt design

After the ccopt design command is run, you may see a bunch of white X markers on your design.
These are some Design Rule Violations (DRVs), indicating Innovus didn’t quite comply with the
technology’s requirements. Ignore these for the purposes of this lab.

Question 3: Understanding P&R Steps

a) Submit a snapshot of your design for each of the four steps described above (use whichever Innovus
view you deem is most appropriate to show the changes of each step). Make sure the V8 M8 V9
M9 layers are not visible, and your design is zoomed-to-fit. Describe how the design layout changes
for each major step in their respective figure captions.

b) Examine the power straps on M1, in relation to the cells. You will need to zoom in far enough to
see the net label on the straps. What does their pattern tell you about how digital standard cells
are constructed?

c) Take a note of the orientations of power straps and routing metals. If you were to place pins on
the right side of this block instead of the bottom, what metal layers could they be on?

Now zoom in to one of the cells and click the box next to “Cell” on the right panel of the GUI. This
will show you the internal routing of the standard cells. While by default we have this off, it may
prove useful when investigating DRVs in a design. You can now exit the application by closing the
GUI window.

/home/ff/eecs151/labs/manuals/TCRcom.pdf
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Project Preparation

Question 4: ALU

In this question, you will be designing and testing an ALU for later use in the semester. A header
file containing define statements for operations (ALUop.vh) is provided inside the src directory of
this lab. This file has already been included in an ALU template given to you in the same folder
(ALU.v), but you may need to modify the include statement to match the correct path of the header
file. Compare ALUop input of your ALU to the define statements inside the header file to select the
function ALU is currently running. Definition of the functions is given below:

Op Code Definition
ADD Add A and B
SUB Subtract B from A
AND Bitwise and A and B
OR Bitwise or A and B

XOR Bitwise xor A and B
SLT Perform a signed comparison, Out=1 if A < B

SLTU Perform an unsigned comparison, Out = 1 if A < B
SLL Logical shift left A by an amount indicated by B[4:0]
SRA Arithmetic shift right A by an amount indicated by B[4:0]
SRL Logical shift right A by an amount indicated by B[4:0]

COPY B Output is equal to B
XXX Output is 0

Given these definitions, complete ALU.v and write a testbench tb ALU.v that checks all these oper-
ations with random inputs at least a 100 times per operation and outputs a PASS/FAIL indicator.
For this lab, we will only check for effort and not correctness, but you will need it to work later!
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